
A CLASS OF INEQUALITIES1

H. D. BLOCK

1. Introduction. We present inequalities which bound max, \y(x)\

in terms of integrals involving y and dy/dx. These results appear to

be unknown, despite the fact that they are fundamental, useful and

are obtained by extremely elementary methods. An inequality similar

to (17) below was pointed out to the author by Professor P. C. Rosen-

bloom; his proof suggested the ideas used here. The author is in-

debted to Professor Rosenbloom.

2. Notation and assumptions. Let a and b be numbers (a<b)

which are fixed throughout the rest of this paper. Any function de-

noted y or y(x) is assumed to be defined and continuous on a^x^b

and to have there a derivative which is sectionally continuous. The

prime (') will always denote differentiation with respect to x. Let

/(*)>/'(x)> g(x) De given functions which are continuous on a^x^b.

3. General results. For a fixed / satisfying a<t<b, suppose that

w(x; t) satisfies the following four conditions:

(1) (fw')'-gw = 0 for a^x<t and Kx^b,

(2) w(x; t) is continuous for a^x^b,

(3) lim«.o [w'(t-e; t)-w'(t + e; t)]f(t) = l,

(4) f(a)w'(a)y(a)=f(b)w'(b)y(b).
Now

fw'y'dx = Lim     I       fw'y'dx +  I     fw'y'dx
a e—>0  L J a J t+t

= Limf fw'y        + fw'y      —   I       y(fw')'dx
i->0  \ J0 Jt+e      J a

-J   y(fw')'dx\ = fw'y~]^

+ y(Q — I    gwydx.
J a

Hence
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(5) y(t) =   I    (fw'y' + gwy)dx.
J a

Let numbers a, /3; y, 8; p, q; p., v satisfy a+/3=l, 7 + 5=1, p^l,

l/p + l/q=l; n^l, l/p + l/v = l. Then \fw'y'+gwy\ ^ \f"w'\ \fy'\
+ |gTw| \gsy\ ^(\faw'\p+\gyw\p)1ip(\fy'\"+\gsy\q)llQ, so that

\y(i)\   g      I    (\faw'\p+ | gfw \pyipdx\

(6) L    " Jv ' r   pb -ii/v

•I J   (l/Yl3+ |gM5)'/5<M   .

For fixed values of a, y, p, p this takes the form

(7) \y(t)\   ̂ M(|J (|/Y|9+ |g'y|«)"«^    ',

where

(8) M(t) =      I   (|/<V|P + | g^w l^'^x      ,

and does not depend on the function y. Or, letting M = sup0<t<a M(t),

(9) | y(t) | £m f (\fy'\Q+ \g*y \qYlqdx\   .

A case of equation (6) of particular interest is when /(x)S:0,

g(x) ^ 0 and p = p = 2 = l/a = 1/y. Then (6) takes the form

(6a) | y(t) \2 ̂  M2(t) J  [(y')2f + y2g]dx,

where, by the argument leading to equation (5) with y there replaced

by w,

M2(t) =  j    [(w')2f + w2g]dx

(8a)
= w(t;t) +f(b)w'(b)w(b) -f(a)w'(a)w(a).

4. Particular cases. One can get M(t) in (7) into more concrete

form by choosing/(x) and g(x) so that w(x; t) can be found explicitly.

If f(x) 2:0 and g(x) 2:0, then the computations can be made easier by

means of (8a) and one then obtains a concrete form of the inequality

(6a). It is a fact, but one which does not seem to be helpful in this
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connection, that M2(t) = fa[(w')2f+w2g]dx^fba[(u')2f+u2g]dx for any

function u(x) that agrees with w(x; t) when x = a,b and t. This follows

from the fact that (1) is the Euler-Lagrange equation for that varia-

tional problem.

To guarantee that equation (4) is satisfied we must make certain

assumptions about w; these assumptions vary according to the con-

ditions we impose on y and/. Accordingly we treat several cases:

Case I. Here we assume that /(x)>0 for all a^x^b. Now we

may be interested in inequality (7) for functions y which are required

to satisfy: (a) no additional restrictions; (/3) y(a) =ky(b) where k is a

fixed constant; (7) y(a)=y(b)=0; naturally we expect successively

smaller values of M(t) in cases (a), (f3), (y). Since equation (1) is now

regular there are functions Wi(x), w2(x), w3(x), Wi(x) which satisfy

equation (1) for a^x^b and such that Wi(a) =w3(b) =w2 (a) =w{ (b)

= 1, w{ (a) = w3 (b) =w2(a) =Wi(b) =0. The solution w(x; t) is then

(A(t)wi(x) + B(l)w2(x), for a ^ x < I,
(10) w(x; t) = <

\C(t)w3(x) + D(t)wi(x),    for  t<x^b,

where to satisfy conditions (2) and (3) we must have

(11) Awi(t) + Bw2(t) - Cw3(t) - Dwt(t) = 0,

(12) Awl (t) + Bwi (t) - Cwi (t) - Dwl (t) = l/f(t).

These equations are consistent since the Wronskian w2i is not zero,

(wij = w'wj — w'jWi). By (8a) we now have

(13) M2(t) = A(t)wi(t) + B(t)w2(t) +f(b)C(t)D(t) -f(a)A(t)B(t).

Case la. To satisfy equation (4) in case (a) we must require that

w'(a) =w'(b) =0, which gives the additional equations

(14) 5 = 0,

(15) D = 0

The four equations (11), (12), (14), (15) serve to determine

A,B, C, D. We then get

w3(t)wi(x)
w(x, t) = - a S, x < t,

wu(t)f(t) -     -

wi(t)w3(x)
= - t < x < b,

Wn(W)

provided that Wi3(t) 9*0.

One can, with sufficient patience, compute solutions w(x; t) for
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particular functions/(x) and g(x), put the results in (8) and get inter-

esting inequalities. One can, with somewhat less patience, use (8a)

and (6a) which become now M2(t) =w(t; t) and

,        ,        wi(t)ws(t)   rb
| y(t) |2 ^-7T77T I    !■(?')Y + y2g\dx, respectively.

To illustrate: suppose/(x) = 1, g(x)=c2>0. Then Wi = cosh c(x — a),

w3 = cosh c(b — x), Wn = c sinh c(b — a). Then

w(l; t) = cosh c(b — t) cosh c(t — a)/c sinh c(b — a).

One has thus the inequality

,        cosh c(b — l) cosh c(l — a)   Cb,
(16) | y(t) |2 ^-V   , -^-       [(y')2 + c2y2]dx

c sinn c{o — a) J a

valid for any function y; one also has the uniform bound

,        coth c(b — a)   rbr
(17) | y(t) \2 ^-       [(y')2 + c2f]dx.

C J a

Finally we note that here (case la) the M2(t) given by w(t, t) gives

the best possible bound in (6a) since equality holds at the point

t if yt(x) is selected to bew(x; t). Thus, for example, equality holds for

yt(t) in (16) if y((x)=cosh c(b — t) cosh c(x — a), for a^x^t, and

cosh c(b— x) cosh c(t — a) for t<xf=b. Similarly equality holds for

ya(a) in (17) if ya(x) =cosh c(b — x).

Case 1/3. Now the w(x, t) is given by (10) where A(t), B(t), C(t),

D(t) must satisfy equations (11), (12) and, to satisfy (4) when y(a)

= ky(b),f(a)Bk=f(b)D. This gives

w3 / kf(a)       \

Wl3A=W) + BV32 + ~mwV'

Wi ( kf(a)       \
WnC=W) + BV12 + WwV''

inserting these in (13) we get:

WiW3 I kf(d) f(a) \
wuM2(l) = —— + Biw-iWu + —— wiwi3 + —— (kwi — w3) I

+ Bf(a)    k I wn + k —- wn 1 - w32-—- wi3
L   \ f(b)      / f(b)       J

= f + VB + $B\
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which has its extreme value when

B = — r\/2$ and then has the value £ — n2/4^ or

r kf(a) f(a) f
W3W12 + ——- WiWt3 + —— (kWi - w3)

(18)   wuM2(t) =-•

4f(a)   kwi2 + (k2) — wn - w32 - ——- wi3
L f(b) f(b)       J

If we consider the same special case as before (f(x) = 1, g(x) = c2 > 0),

then equation (18) becomes

M2(t)

= {k2 cosh c(t — a)[cosh c(b — a) cosh c(b — t) — cosh c(t — a)]

+ cosh c(b — f)[cosh c(b — a) cosh c(l — a) — cosh c(b — t)]}

• {c sinh c(b - a)[(l + k2) cosh c(b - a) - 2k}}~1.

That is, for all y satisfying y(a) =ky(b), one has

\y(t)\2^M2(l) J [(y')2 + c2y2]dx,

where M2(t) is given by (19). In particular setting & = 0 one has that

for all y such that y(a) =0

.        .        cosh c(b — j)[cosh c(b — a) cosh c(t — a) — cosh c(b — t)]
I y(t) |2 ̂  -

c sinh c(b — a) cosh c(b — a)

•J   [(y'Y + c2y2]dx,

and the uniform bound

, ,        tanh c(b — a)   fbr
(21) I y(t) \2 g- I    [(y')2 + c2y2]dx;

C J a

or, integrating (20)

rb (b — a) tanh c(b — a)  fh .
(22) I   y2dx g- I    [(y')2 + c2y2]dx.

J a 2c •'o

The inequalities here are not necessarily best possible, since in the

proof of this for case la we permitted ourselves to take y = w, but

now we are requiring that y(a) =ky(b) and w might not satisfy this.

In particular letting c—>0 in (22) we obtain
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r » (b - a)2 r "
I    y2dx g ^—— I    (y')2<**,

J a 2 J a

and it is known [l, pp. 183-187], that the best constant here is not

(b-a)2/2 hut4(b-a)i/ir2.

Case Iy. Now only equations (11) and (12) must be satisfied by

A, B, C, D. This leaves a two parameter family of solutions w(x; t)

for us to choose among. This enables us to lower the value of M(t).

Now we minimize M2(t) as given by (13), where the A, B, C, D are

constrained to satisfy equations (11) and (12). If, for example we take

again f(x) = l, g(x)=c2>0 then we find the inequality

, ,        sinh c(t — a) sinh c(b — t)   C b r
(23) \y(t)\2^-^-^--\-       [(y')2 + c2y2]dx

c sinh c(b —a) J „

valid for any function y such that y(a) =y(b) =0; from this the uni-

form bound

c(b — a)
tanh •-

(24) | y(t) \2 Sg-—- f  [(y')2 + c2y2]dx;
2C J a

or, by integrating (23),

Cb c(b — a) — tanh c(b — a)  rbr
(25) /   y*dx£ -—-       [(y')2 + c2y2]dx.

J a 2c2 tanh c(b — a)        J a

Again, as in case 1/3 we cannot assert that the inequalities are best

possible for reasons similar to those given in case 1/3; in particular let

c^O in (25) to obtain

rb        (b- ay r"
J   y2dx g j    (y')2dx;

it is known that best constant is for the 6 to be replaced by ir2

(Wirtinger's Inequality [l]), so that equality is not achievable here.

If we let c—>0 in (23) we obtain

, ,        (I - a)(b - t)  rb b - a rh
y(/)|*gl__^-Ll   (y)*dxg |   (yrdx>

b — a        J a 4     J a

for all functions y(x) satisfying y(a) =y(b) =0. For the function y(x)

= x — a  for a^x^(a-\-b)/2; y(x)=b — x,   (a+b)/2^x^b  one  has

| y((a+b)/2) |2 = ((b -a)/4)Jl(y')Hx.
Since y(a) =y(b) =0 and for such functions
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f  (y')2dx
J a

-JI [("7~e:y")2 + ("7 + ey"J dx = isf [f + tV')2]^

it follows from (23)-(25) that

.        sinh c(t — a) sinh c(b - t)   C T / 1 \ 1
I  ̂  I'   =  -O       •    V.     /A \- T + 2C2)^2 +  e2(y")2   HX'

2c sinh c(b — a) Ja LVe2 / J

c(6 — a)
tanh -

|y(j)M-—-j  [(j + 2c2^y2 + e2(y")2   dx,

/'b              c(b - a) - tanh c(b — a)  FT/1 \ 1
y2dx g-        \{— + 2c2)y2 + e2(y")2   dx,

.                      4c2 tanh c(6 - a)        JaL\e2 )' J

for any e>0 and y(x) such that y(a) =y(b) =0.

Case II. If we do not have/(x) different from zero throughout the

interval then we cannot assert the existence of the functions Wi, w2,

w3, Wi used in Case I. However if we are putting no restrictions on y

and if e.g., f(a)=0, then condition (4) can be satisfied by taking

w'(b) =0 and this gives us another degree of freedom with w; to il-

lustrate: let/(x) =xm, (m>0), g(x) =mxm~2, a = 0,b = l. Then an easy

computation shows that

' x(mt + rm)
—- for 0 ^ x ^ t,

1 + m
(26) w(x; t) = ■

t(mx + x-™)
- for   (gigl

I     (1 + m)

satisfies (l)-(4). Now, by (8a), M2(t)=w(t; t) =t(mt+f-m)/(l+m), so

that we can assert for all functions y

l(fnt + t~m)  C 1
(27) | y(t) |2 g -- I    [xm(y')2 + mxm~2y2]dx;

1 + m    Jo

for 0<m5=l we have the uniform bound

(28) | y(t) [2 ^  I    [xm(y')2 + mxm~2y2]dx

Jo
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or, integrating (27), we have, for 0<w<2

r1 (3-m)   cK
(29) |    y2dx ^- I    [xm(y'Y + mxm~2y2]dx.

Jo 3(2 — m) Jo

Equality in (27) may be achieved at the point t by choosing yt(x)

= w(x; t) as given in (26). If 0<m^l then the equality in (28) is

achieved at / = 1 when y(x) =x for all x.
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