
DISCRETE ANALOGUES OF CERTAIN INTEGRAL
INEQUALITIES

H. D. BLOCK1

1. Introduction. In a previous paper [l] a class of inequalities was

derived which bounded maxr |y(x)| in terms of integrals involving

y and dy/dx. In the present paper analogous results are found for

the discrete case. In forming the analogue of the derivative there is

some question as to what condition at the boundary is appropriate.

In some situations it is appropriate to use the periodic end conditions;

i.e., if Z=(zi, • • • , zjv) then one takes DZ=(z2 — zx, z3 — z2, • ■ ■ ,

Zn — Zn-i, Zi — Zn) as the analogue of the derivative. In other situations

it appears more natural to use an (N—l)-vector Z = (z2 — Zi, • • ■ , zn

—Zn-i). Each of these cases will be dealt with here; for DZ we use a

technique which is patterned after an eigenfunction technique in the

continuous case and for Z a device which imitates the use of the

Green's Function which we made in [l]. The author is indebted to

Professors C. Herz and P. C. Rosenbloom for helpful discussions on

techniques in the continuous case which suggested some of the meth-

ods used below.

2. Periodic end conditions. Let zu z2, ■ • ■ , zn be complex numbers,

N^3. Then Z=(zi, ■ ■ ■ , zn) is a vector in unitary A-space, Un,

with the inner product (Z, Y) = 22n=i znyn- Let Hbe an operator such

that iFi>n = X„<I>n, n = l, ■ ■ ■ , N, where {$1, • • • , $n} is an ortho-

normal basis for Un- Now Z= 22n-icr&n, where cn = (Z, 4>„); ||z||2

= 22Li\cn\2and\\HZ\\2=22Li\^Cn\\Let<l>n = (d>i(n),4>2(n), • ■ -,
4>N(n)).

Let the integers (1,2, • • ■ , N) be divided into two disjoint sets /

and J and let d be a number such that dr*\j for any j in J. Then for

any k in I\JJ

N

Zk = 22'cn<i>k(n)
n-l

= 2- Ci<i>k(i) + d2^ -—— - L, ——— •
iel j£J   a — Ay jEj    a — Aj

Hence by Schwarz's Inequality
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UI s(gM')"'(E I*»!•)"■

(.) +'m(eiJy''(s|^-|T'
\ jeJ /      \ jeJ I a — Xy I /

Hs'-if(5iaiT"
Thus

(2) \zk\   ^(Ak+ \d\ Bk)\\z\\ + Bk\\HZ\\,

where the quantities

^ = 1 L l**WP    .     #* = ( 2-, -—-  )
\ iel / \ jeJ I d — Xy | /

do not depend on the particular vector Z.

To illustrate (2) let HZ = DZ=(z2 — Zi, ■ • ■ , Zi — Zn). Then

gtrinklN

<t>k)n) =->

X„ = e2""'* - 1;

let d = 0 and let I=(N). Then

1
Ak =->

N112

1     Z1^ ,   \1/2      1 (N - 1\1,J        *
Bk =-( 22 cscJ irj/N )     ^—(-)     csc—•

2Al/2\,t1 / 2\    N    ) N

Hence we have

Theorem 1. For any Z=(zi, • • • , zn)

(3) sup    U|   g-^||z||+l(csc,r/iVO||Z>z||.

The equality holds if and only if Z=C(1, 1, • • ■ , 1).

If Z satisfies special conditions, such as 22n-i zn = 0, then discrete

analogues of Wirtinger's Inequality can be obtained, using the nota-

tion of the above illustration, as follows. Since cn = (Z, $n)

= N~ll222n-i zn, the condition 22n-iZn = 0 is equivalent to Cat = 0.

Then
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ll^!|2= E  |cnX„|2 = E4|c„|2sin2—= £4|c„|2sin2 —
n=l n-l A n-l A

^ 4 sin2 —X Uni2 = 4 sin2 — llzll2.
An-/' N "     " .

The equality holds if and only if Z is a linear combination of $i and

<bjv_i, or, equivalently, of (sin (2tt/N), sin (4ir/N), • • • , sin 2?r) and

(cos (2ir/N), • • • , cos 2tt).

To deal with the case where it is given instead that Zn = 0, define

ZN+k= — Zk (k = l, ■ • ■ , N) and apply the result just obtained to

(zi, • • ■ , z2n), since 22n=i zn = 0. From zn = 0 it follows that ||z|l2 and

||DZ||2 are just doubled in the new computation. Hence ]|-DZ||

^2 sin (7r/2A7)|[Z||; the equality will hold for such Z if and only

if Zk = C sin (trk/N), since the condition zir = 0 must now also be satis-

fied.
Since any vector of the form Y = DZ= (yu ■ ■ ■ , yjv) has 22n=i y*

= 0 we have H-D**1^ ̂  (2 sin (w/N))k\\DZ\\; if 22%-i Zn = 0 this gives

||-D*Z|| ^ (2 sin (7r/A))*||z||, which is achieved if Z is a linear combina-

tion of $i and 4>jv_i. If, instead, zN = 0 then \\D2Z\\ ^2 sin (7r/A)||F»Z||

^4 sin (tt/N) sin (7r/2A)||z]|, but the equality here cannot be achieved

unless Z = 0.

Clearly the same inequalities hold if one uses backward instead of

forward differences and, for the higher orders, any mixture.

Similar results can be obtained for several dimensions by an

analogous method. For example, with a two-dimensional array of

M columns and N rows Z = zmn, m = l, ■ ■ ■ , M; n = l, ■ ■ ■ , N,

taking ($m„) as a normal orthogonal system, where (<i>mn)r,

= (l/(MN)ll2)e2*i<-mT'M+n'lN\ one finds in the same manner that if

22n-i22m~iZmn = 0, then

||2?XZ||2 + [|DSZ||2^ [2 min (sin (it/M), sin (7r/A))||z|| ]2

and

\\(Dl + D2y)Z\\ ̂ [2 min (sin (t/M), sin (x/A))]2||z||,

with equality holding for each of these for a suitable choice of Z;

indeed Z may be chosen with real components, so that the inequality

is sharp in the real case also. Similarly, if the numbers zmn vanish on

two adjacent edges of the rectangle, i.e., zmN=ZMn = 0, then

\\DXZ\\2 + \\DyZ\\2 ^ 4 [sin2 (ir/2M) +sin2 (7r/2A)]||z||2

and
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\\D-lz + d\z\\ ^ 4(sin (tt/M) sin (r/2M) + sin (x/A7) sin (x/27v"))||z||2,

where the first equality is achievable, but the second is not. All of

this may be summed up in the following theorem, some of which is

already contained in [2] where the proof is slightly more laborious.

Theorem 2.

(a) // 22n-i 2n = 0, then \\DZ\\ ̂  (2 sin (w/N))\\z\\,
(b) ifzs = 0, then ||DZ||^(2 sin (x/2iV))||z||,

(c) ||-E>t+1Z|| ̂(2 sin (w/N)Y\\DZ\\,

(d) if Eli zn = 0, then \\D*Z\\ fc(2 sin (w/N))"\\z\\,
(e) if 22ti2-.«» = 0) then

\\DXZ\\2 + || A,z||2 ^ [2 min (sin (x/Jf), sin (x/A))||z||]2 and

\\dIz + d]z\\ ^ [2 min (sin (tt/M), sin (x/A))]2||z||,

(f) ifzmN = zMn = 0, (m = l, ■ ■ ■ , M; n = l, ■ ■ ■ , N) then \\DXZ\\2

+ ||Z)1,Z||2^4[sin2 (x/2Af)+sin2 (x/27\T)]||Z||2.

(g) ifzN = 0 then \\D2Z\\ ̂ 4 sin (ir/N) sin (t/2JV)||z||,
(h) if zmN = zun = 0 (m = l, ■ • ■ , M; n = l, • • • , N), then

■ I      2 2     ii / X X X X  \ ..     .,

\\DXZ + DyZ\\ > 4 (sin— sin-\- sin— sin-) \\Z \\2,
" " ~    \     M       2M N        2N/U   "

where the equalities (a)-(f) can be achieved for nonzero real vectors as

given in the text, but (g) and (h) can not.

Remark. A case in which it is reasonable to lower the dimension

by two is when we seek the minimum of ||A2Z|| subject to Zi = z.v = 0,

and take A2(0, z2, ■ • ■ , z^-i, 0) = (z3 — 2z2, z\ — 2z3-\-z2, ■ ■ ■ , zN~i

- 2s„_2 + Ztf-3, - 2ztf_! + z^2). Then 6n = (2/(N-2))"»(0,

sin (2mr/(N-l)), sin (4mr/(iV~-l)), • • • , sin (2(N-2)mr/(N-l)),

0), n — 1, 2, ■ ■ ■ , N — 2 form an orthonormal basis in the subspace of

interest with A2©„ = - 4(sin (nw/(N - l)))2(2/(N-l)y2

(sin(2mr/(N-l)),sin(4mr/(N-l)), ■ ■ ■ ,sin (2(N-2)mr/(N-l))).

Thus if Zi = zat = 0 it readily follows that ||A2Z||^4 sin2 (x/(A-l))

Ml
3. Reduction of dimension. Here we define Z as the (n — 1) vector

(z2—zi, z% — z2, ■ ■ ■ , zn—zn-i) = (zi, z2, ■ ■ • , zn-i) with the corre-

sponding inner product

}2 Ziyi = (Z, Y).
i-l
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For a fixed k such that l^k^N suppose that W = W(k) = (wi(k),

■■■,   wN(k))   satisfies:   (LW,   MY) + (RW,   SY)=yk   for   all    Y

= (yii " ■ • . yx) in a subset V of Un, where L and M are operators on

Un-i and R and S are operators on Un- Then

| y* I   = \\LW\\-\\MY\\ +||icIF||-||5F||,

I y*|2 ^ (||lif||2 + ||j?tf||2)(||mf||2 + ||sf|]2),

or

\yk\2 < B2(k)(\\MY\\2 + \\SY\\2),

where B2(k) =||LlF|[2 + ||i?IF||2 does not depend on the particular

vector Y. If L = M and R = S, then, if WE V, we may take Y= W so

that B2(k) =Wk(k), which simplifies some computations. We illustrate

the technique for the case when L = Af = the identity operator and

R = S = a positive constant c times the identity. The results above

can then be summarized as follows. If W= W(k) satisfies

(4) (IF, F) + c2(W, Y) = yk

for all F in VQ Un, then for all Y in V

(5) | yk |2 =S (||JF||2 + C2||IF||2)(|| F||2 + c2\\ Y\\2).

Let X be a positive number 9*1, let c2 = X-fT/X — 2 and let a = logX.

Let k be fixed (l^k^N); let W(k) = (wi, w2, ■ • • , wn) where

Wi = A\* + B\-* for 1 ^ i ^ k,

Wj = CV + D\~i for k Sj S N.

This implies that we are taking

(6) D- B = \2"(A - C).

Then

N-l N-l N-2

22 WiVi = 22 (w<+i — w,)y,+i — 22 (w»+2 - wi+i)yi+i
i-l i-l i-0

JV-1

= — 22 (w>+i — 2w< + Wi_i)y,- + (wn — WN-i)yN — (w2 —wi)yi
i-l

N

= — 22 c*Wiyi + {c2wkyk — (w(k+i) — 2wk + wk-i)yk}
i-l

+ [wN(l + c2) — wN-i]yN + [wi(l + c2) — w2]yh

where the term in {   } is to be set equal to zero if k = 1 or k = N.
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If Kk<N

(W, Y) + c2(W, Y)

= yk + (X - 1)[(CXW - D\-"~i)yN + (BX-1 - A)yi]

provided that

(8) (A - C)\k+1 + (B - D)\~k~l = 1.

For£ = l

(W, Y) + c2(W, Y) = [wN(l + c2) - ww_Jyjv + [wi(l + c2) - wt\yi

= yi + (X - 1)(CX* - DX-^-^y^,

provided that

(8a) (X - 1)(£> - XC) = X;

and for k = N we get

(7b) (W, Y) + c2(W, Y) = yN + X~l(l - \)[A\ - B]yi

provided that

(8b) (X - 1)(A\« - BX-"-1) = 1.

Now we get several types of inequality (5) according to class of

vectors Y is permitted to belong to. We consider three cases: (I) Y

unrestricted, (II) yi = KyN where if is a fixed constant, (III) yi = yN

= 0. Naturally we expect smaller bounds as we go from (I) to (II) to

(III).
Case I. For Kk<N we require that A, B, C, D satisfy (6), (8),

and, in order that (7) be of the form (4) for all Y in UN:

(9) CXN = DX-"-1,

(10) B = X^l.

Then

\\W\\2 + C2\\W\\2 = wk(k) =-

For k = l, we require (6), (8a) and D = C\2N+1. These guarantee that

(7a) reduces to the form (4); then 1^(1) = (X+X2iV)/(X-l)(X2^-l).

Similarly for k = Nwe take (6), (8b) and B=\A so that (7b) reduces

to the form (4). Then wN(N) = (\N+\~N+x)/(\-l)(XN-\~N). Hence

we have

Theorem 3. For any set of numbers yi, ■ ■ ■ , yN; and any X, 0 5^X7^1,
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,    .      (X2N+1 + x2* + x2<*-*+» + X)

'      '   ~ (X2 - 1)(X2* - 1)

(11) .
•(||f||2 + (x1'2 - i/x1'2)2!!^!2)

or, letting \ = e",

cosh aN + cosh a(A — 2* + 1)
y* 2 =-

(12) 2 sinh a sinh aA

•(||F||2+ 2(cosha- 1)|| F||2);

in particular the uniform bound:

I yk\2 ^ — [coth aA(csch a -f- coth a) — l]
(13) '      ' 2

•(||I>||2 + 2(cosh a — 1)|[ F||2).

F&e equalities in (11) aw<2 (12) are achieved if Y=W(k) and, with

k = l, equality is also achieved in (13).

Case II. If Kk<N then we require (6), (8) and CX^-DX-"-1

+ (B\~l-A)K = 0, in order that (7) be of the form (4). Then from

(7) with Y replaced by IF we get

||TF||2 + c2||lF||2 = Wk + (X - l)(B\~l - A)[wi - KwN]

= AXk + B\-* + (X - 1X.BX-1 - A)[AX + BX-1 - KCXN - KDX~N]

and one can minimize this with respect to the free parameter. For

example with A = 0 we get for 1<£<A

„ . ,, ,,     .,        cosh a(N + 1/2 — k) sinh a(k — 1)
\\W\\2 + c2\\W\\2 =- ■
"    '. cosh a(N - 1/2) sinh a

For k = N we require (6) and (8b) since the condition yi = 0 then

guarantees that (7b) is of the form (4). Then from (7b) with Y re-

placed by IF we get:

||IF||2 + c2|[lF||2 = .4X* + BX-N + X-i(l - X)(AX - B)(AX + BX-1),

which, when we minimize with respect to the free parameter, gives

the same form as above, so that we get the following theorem

Theorem 4. Let yi, y2, • ■ ■ , yN be such that yi = 0; then for l^k^N

ftts .        cosh (a(N - k + 1/2)) sinh (a(k - 1))(|| F||2 + c2\\ Y\\2)
(14) \ yk 2 S -,

1 *  ' cosh (a(N - 1/2)) sinh a

where a = \ arc cosh (c2/2 + 1) |.
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In particular, taking the maximum:

,      i        cosh (a/2) sinh a(N — 1)   ,,  .,, ,,    ,,
(15)        UM--^--(||f||2 + c2||f||2)

cosh a(N — 1/2) sinh a

or, summing (14):

N

E UI'

(N sinh (a(N - 1/2)) sinh a - sinh Na sinh (o/2))(|| F||2 + c2|| F||2)

2 cosh a(N - 1/2) sinh2 a

Case III. Now we have only (6) and (8) as constraints with||lF||2

+c2|| W\\2 given by (7); minimizing this with respect to the two free

parameters we get

Theorem 5. Let yi, • ■ ■ , yN be such that yi = 3'iv = 0; then for

O^k^N

,      ,        sinh (k — l)asinh (N — k)a  ., ... ..    ..

(i6)      UM    .,    . w„   u—(\\y\\2 + 4y\\2),
smh a smh (N — l)a

where a= \ arc cosh (c2/2 + l) |.

In particular, taking the maximum of the right side:

.      .        tanh ((A- l)/2)a   ,, .,, ,,    ,,
(17) \yk\2^-,   •        ' (||F||2 + C2||F||2);

2 smh o

or, summing (16):

* r(^V- l)coth(AT- l)a- cothol  „ .„ „    „
(is) E I y*N-—^t—- (II F!l2 + c2ll Fll2)-

k-i L 2 sinh a J
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