
ON SOME MERCERIAN THEOREMS IN SUMMABILITY

m. r. parameswaran

1. Introduction. Mercer's Theorem [10; 4, Theorem 51 ] and vari-

ous extensions of it have been treated in many recent papers [l; 3;

7; 8] etc. It is the object of this paper to use functional analysis to

prove Mercerian Theorems for ordinary and absolute summability;

we prove also a few results on absolute summability that may have

some independent interest. Functional analysis treatment of Mercer-

ian theorems for ordinary summability has also been given by Sirkov

[13].1

2. Some notations and lemmas. We note the following definitions

and lemmas, some of which are quite well known. We shall use the

symbols (c0), (c) and (m) to denote respectively the set of all se-

quences converging to zero, the set of all convergent sequences, and

the set of all bounded sequences. The sequence-to-sequence trans-

formation given by the equations

00

y* = E a,nkXk, (n = 0, 1, 2, • • • )
*—o

will be written as a matrix equation y =Ax where y and x are column

vectors, y= \yn\ and x= {x„}. Let (9ft) and (9?) be given sets of

sequences. Then T(9ft, 9c) will denote the set of matrices A such that

xG(9ft) implies ^4xG(9i). As we shall see, it will be convenient to

work with this notation.

Lemma 1 (Hille [5, p. 92]). IfY is any complex Banach algebra with

unit element I, then for every element A GT the element I-\-qA where

q is any complex number such that \q\ ■ \\A\\ < 1, has an inverse in T.

Lemma 2. The sets of matrices T(c0, c0), T(c, c) and Y(m, m) are all

complex Banach algebras, with the norm in each case being defined by:

||.4|| =I.u.b.os„<» E*°-o |fln*|.

A proof for Y(c, c) is found in the author's paper [ll]; the other

cases are similarly proved.

Lemma 3. (Zeller [14]). Let AGT(m, 9ft), (9ft) = (c0) or (c). If

^4xG(9ft) implies xG(w), then xG(9ft).
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1 The author is thankful to the referee for this and other valuable remarks.
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Lemma 4. Let A Gr(2fl, W), (W) = (c0) or (c). If the matrix B is such
that AB = BA = I and BET(m, m) then BET(W, 3JJ).

The case (9Ji) = (c) is proved elsewhere [12]; the other case is

proved similarly.

3. Some Mercerian theorems. We now give two theorems, the first

of which includes, and slightly generalizes, Theorems 1, 2, 3 and 4 of

Love [8], and is itself included in the second theorem the results of

which were first proved by Agnew (see [l; 2]).

Theorem 1. Let A E.T(Tl, W) where (W) = (cQ), (c) or (m). Then the

conditions (I-\-qA)x£C>IJl),

00

(1) I q | ■ lim sup £ | aB* |   < 1
n->»      *_o

imply that xG(9ft) provided that either (i) xG(wz) or (ii) A is a lower-

semimatrix (i.e., aB* = 0 for k>n).

Theorem 2. Let A ET(m, W), (9W) = (c0) or (c) or (m) and let

(2) lim inf { | aBn | -  £  | aB* | } > X > 0;
«->«• ten

then Ax(EC>fR) implies that xE(2K), provided that either (i) x£(w) or

(ii) A is a lower-semimatrix.

Proof. We may assume without loss of generality that |aBB|

— £**n | On*| >X>0 for all «, for we may alter a finite number of

rows of the matrix A without affecting its summability properties.

Define the matrix B by I+B = (ank/ann). Since ||2J|| <1 by (2), we have

by Lemmas 1 and 2 that C= (I+B)~lET(m, W). Also I+B =PA

where P = (pnk) is a diagonal matrix with pnn = l/aBB for all n. Since

|M|| S |aBB| >X>0, both P and P~l belong to T(m, m). Since further

P^C=CP^=/ = P-l(P^C)P = ^CPweseethat^-1 = CPGr(w,w).
Therefore, if A is a lower-semimatrix then ^4x£(2R) implies xGW,

and it follows from either of Lemmas 3, 4 that xG(SDf})- This proves

part (ii) of the theorem.

If xG(w) and ^4xG(3ft), then by what has been proved above and

Lemma 4, we see that ^4_1Gr(5m, 9ft) and part (i) of the theorem is

also proved.

4. Absolute summability. Corresponding to the Mercerian theo-

rems for ordinary summability, there are also analogues for absolute

summability—where convergence is replaced by absolute conver-

gence. The sequence x= {x„} is said to be absolutely convergent if
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and only if the series E"-o (x„ —x„_i) is absolutely convergent (x_i is

taken to be zero). We shall denote the set of all absolutely convergent

sequences by (\c\), and the set of all sequences x= {x„} such that

EiT-o | xn\ < °° , by the symbol (h). Theorem 3 below is the analogue

of Lemma 2 for absolute summability; we shall prove it by a some-

what indirect method by a number of easy steps, proving a few

lemmas which may also be considered to be of some independent

interest.

Lemma 5. (See Mears [9]). The matrix P = (pnk), (», k=0,1, 2, • • •)

belongs to T(\ c\,\c\), that is, PxG(| c\) for every xG(| c\) if and only if

(3) \\P\\* m      l.U.b.      E    E  (Pnk  ~   Pn-Uk)     <   00
0gt<»    „_o    k-h

where p-i,k = 0 and

gn = E Pnk      exists for each n — 0, 1, 2, • • • .
k=0

Lemma 6. (See Knopp and Lorentz [6]). The matrix A — (ank) be-

longs to Y(lu h) if and only if

oo

(4) \\A'\\ s l.u.b.    E \am\   < *
0S*<»     „=0

(or equivalently, if and only if A'GX(m, m) where A' is the transpose

of the matrix A, so that obviously ||^4||' = ||^4'||).

Lemma 7. Let A = (ank) and let G = (gnk) be defined by

(5) g„k = a0k + a-ik + ■ ■ • + ank (n, k = 0, 1, 2, • • • ).

Then A <GX(h, h) if and only if GGT(h, \c\).

The proof is immediate from the equation

00 oo co oo

E     E ankUk        =   ̂ L,     ̂   (gnk  —   gn-l,k)Uk   ,
n-0    k—0 n—0    k=0

for the equation (5) is equivalent to the relation

(6) ank = gnk — gn-i,k (n, k = 0, 1, 2, • • • ).

Definition. The set of matrices ^4Gr(9ft, 9t) such that limj;^ ank

= 0 for each n = 0, 1, 2, • • •  will be denoted by r0(9ft, 9c).

Lemma 8. Let the matrices A  and G be related as above.  Then,

A Gr0(/i, h) if and only if GGr0(/i, | c\).
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The proof is immediate from equations (5) and (6).

Lemma 9. The sets of matrices Y(h, h) and T0(h, h) are complex

Banach algebras under the norm defined by (4).

This is a consequence of the fact that T(/i, k) and T0(k, h) are, un-

der the correspondence A—>A', isometric with the Banach algebras

(see Lemma 2) r(rez, m) and T(c0, c0) respectively.

It is easily verified that the following result is true:

Lemma 10. Let P=(pnk)€=X(\c\, \c\) and let

(7) gnk   =  Pnk + pn.k+l +•••+••• (», k  =  0,  1, 2,   •  •   • ).

Then G=(gnk)E.To(h, \c\) and

(8) pnk = gnk - gn.k+i (re, k = 0, 1, 2, • • • ).

The converse is also true.

Remark. The statements A£Yo(li, h), GGr0(/i, |e|) and

PGr(|c|,|e|) are equivalent. For, s={sB}G(^) if and only if

o"={o-n}G(|c|), where o-„ = s0+Si + • • • +sn. It is easy to verify

that UAGr0(h,li) and sG(«, then As = t= {Q <E(h), Gs=r<=(\c\)
where t= {tb}, t„ = /0+^i+ • • ■ +t„ and further that Pct = t. The

correspondence A<-+G*->P is thus the "natural" one.

We have established above one-to-one correspondences between

r0(/i, h) and r0(/i, \c\) on the one hand and between r0(/i, \c\) and

T(\c\, I c\) on the other. Thus we have the

Lemma 11. The correspondences A<->G<->P where A G To(h,l\),

G6r0(li, \c\) and PGT(|c| ,| c\), as defined above, are one-to-one;

and the correspondence A^>P is expressed by either of the equivalent

formulae

pnk = £ (aik — aiik+i)     (re, k = 0, 1, 2, • • • ),

(9)

ank = £ (pni — pn-i.i)     (re, k = 0,1,2, ■• ■).
i—*

The equations giving (pnk) and (ank) in terms of each other are

verified by simple calculation.

Lemma 12. Let the matrix G be related to A(zlT(Iu li) by the equation

(5) and let B£T(li, h). Then GB€£T(lu \c\) and is similarly related to
ABGT(li, h).
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Proof. The equations (4) and (6) give

CO

\gm\   = E   I Ski - gk~i.i\   ^ m||' <  oo;

also, E<-°o |*i'*| ==||-B||'< oo. Therefore the sums (GB)nk= E<"o gmbik

exist for n, k = 0, 1, 2, • • • ; and hence the product GB also exists.

NOW, (AB)nk   =   Ei" 0 O-nibik   =    El" O  (gni   —  gn-l,i)bik   =   (GB)nk

— (GB)n_i,k and the result follows from the equivalence of the rela-

tions (5) and (6).

Lemma 13. The one-to-one correspondence A<^>P defined above be-

tween To(h, h) and T(\ c\, \c\) is an isomorphism.

Proof. Let A, B^To(li, h) and let the matrices corresponding to

them in r0(/i, | c\), Y(\ c\, \ c\) be G, H and P, Q respectively; that

is, A^G^-P, B<->H<r+Q and G, HET0(h,   c\);P, QGT(\c\, \c\).
It is obvious that A+B<-^P + Q<ET(\ c , \ c\), \A<-*\P where X is

any complex constant. [By Lemma 9 we have that A-\-B, \A and

AB all belong to T0(h, h).] We have to prove that P<2Gr(| c\, \c\)

and that AB^-PQ.
In view of Lemmas 10, 11 and 12 it is enough to prove that the

product PQ exists and that

(10) (PQ)nk = (GB)nk - (GB)n,k+i (n, k = 0, 1, 2, • • •).

Now,

00

(GB)nk - (GB)n,k+i = E gm(bik — bitk+i)
,=o

= E gm(hik — hi-x,k — hiik+i + hi-i,k+i) by (6),
,-_o

CO

= E gm{(hik — hi,k+i) + (hi-i,k+i — hi-i,k))
i=0

CO

=   E  (gni —  gn,i+l)(hik  —   hi,k-i)
i-0

00

= E Pmqik-
i=0

This establishes that the product PQ exists and that it satisfies the

relation (10). Since AB^GBGT0(h, \c\) and GB^PQ^T(\ c\, \c\),

the lemma is proved.
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Corollary. The sets T(\ c\, \c\) and T(co, Co) are isomorphic under

the correspondence P<^>A' where A' is the transpose of A.

Theorem 3. The setT(\c\, \c\) is a complex Banach algebra where

the norm of PGT(| c\, \c\) is defined by ||P[| * given in (3).

Proof. We have from the relation (3), ||p||* = ||^||' = ||^'||. Also,

it is easily verified that the equation (3) defines a norm over

r(| c\, \c\). The theorem follows then from Lemma 2 and the corol-

lary above, in view of the isometry.

Theorem 3 above leads us to the following generalization of

Bosanquet's analogue [3], for absolute summability of Mercer's

theorem; it is the analogue, for absolute summability, of Theorem 2.

Theorem 4. If PGT(| c\, \c\) is a lower-semimatrix and

00 *

I  Vnn |     -     £       £ (pki -  Pk-l.i)     >   X  >   0
k—n+1    i=n

for all n = 0, 1, 2, ■ • ■ , then PxG(| c\) implies xG(| c\).

Proof. Let B=A'QT(co, Co) correspond to P under the isomor-

phism stated in the corollary to Lemma 13. Then it is easily verified

that B satisfies the condition \bnn\ — £™-n+i \b„k\ > X > 0

(re = 0, 1, 2, • • • ) and hence, as seen in the proof of Theorem 2, we

have that -B_1Gr(c0, c0). It follows now from the isomorphism that

P_1Gr(| c\ , \c\). Also, P and P_1 are lower-semimatrices and there-

fore if PxG(| c|) then x= (P-1P)x = P~1(Px)G(| c\) and the theorem

is proved.

It is easily seen that the Mercerian theorem for absolute summabil-

ity given by Love [8, Theorem 5 ] is an immediate corollary of Theo-

rem 4 proved above. It can also be proved that the following result

for Hausdorff matrices, which includes and is more general than the

results given by Love [8, Corollaries 4, 5], is also a corollary of our

Theorem 4. We give an alternative short and interesting proof of the

result.

Theorem 5. // A(E.F(c, c) is a Hausdorff matrix and satisfies the

condition

n-l

(11) | ann |   - £  | ank |   > X > 0     (re = 0, 1, 2, • • • )

then ^4xG(| c|) implies that xG(| c\).

Proof.  As  shown in  the  proof of Theorem  2,  we have now



974 M. R. PARAMESWARAN

A~1£;T(c, c), and since A is Hausdorff, so is A~l. Now, Knopp and

Lorentz [6, Theorem 3] have proved that any Hausdorff matrix be-

longing to T(c, c) belongs also to T(| c\ , \c\). Thus -4-1Gr(| c\ , \c\)

and the theorem is immediately proved.
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