A THEOREM ON CONTINUED FRACTIONS

IRVING REINER

1. Introduction. Let $[a_1, \dots, a_n]$ denote the simple continued fraction whose successive quotients a_1, \dots, a_n are elements of a field K. Following the procedure of Milne-Thompson, define the formal numerator P and formal denominator Q of this continued fraction by means of

For brevity, we write $[a_1, \dots, a_n] \sim P/Q$.

Now let K be a skew-field, and let R = K[x] be the ring of polynomials in an indeterminate x with coefficients in K, where we assume that x commutes with all elements of K. For $f_1, \dots, f_n \in R$, define $[f_1, \dots, f_n] \sim P/Q$ where (as above)

(2)
$$\binom{f_1 \quad 1}{1 \quad 0} \binom{f_2 \quad 1}{1 \quad 0} \cdot \cdot \cdot \cdot \binom{f_n \quad 1}{1 \quad 0} \binom{1}{0} = \binom{P}{Q}.$$

Next let $f \rightarrow f^*$ denote any homomorphism of (R, +) into itself which leaves K elementwise fixed, and satisfies $(af)^* = af^*$ for all $a \in K$, $f \in R$. We shall prove:

THEOREM. If $f_1, \dots, f_k \in R$ are such that $[f_1, \dots, f_k] \sim P/Q$ where $P, Q \in K$, then also $[f_1^*, \dots, f_k^*] \sim P/Q$.

Thus, any identity of the form $[f_1, \dots, f_k] \sim P/Q$, $P, Q \in K$, depends only upon the additive structure of R, and not upon its multiplicative structure. This result will be basic in a future paper on the automorphisms of $GL_2(R)$.

2. Several lemmas will be needed for the proof of the theorem.

LEMMA 1. Let $[f_1, \dots, f_n] \sim P/Q$, where $f_1, \dots, f_n \in R$. Suppose that f_r, f_{r+1}, \dots, f_s $(s \ge r)$ satisfy

$$(3) f_r, \cdots, f_s \in K, \binom{f_r 1}{1 0} \cdots \binom{f_s 1}{1 0} = \binom{0 c}{b d}.$$

Set
$$e = dc^{-1}$$
, $f'_{s+1} = bf_{s+1}c^{-1}$, $f'_{s+2} = cf_{s+2}b^{-1}$, \cdots . Then

Presented to the Society April 6, 1957; received by the editors March 18, 1957.

¹ Proceedings of the Edinburgh Mathematical Society, 1933.

² I. Reiner, A new type of automorphism of the general linear group over a ring, to appear in Annals of Mathematics.

(4)
$$\begin{pmatrix} f_1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} f_{r-2} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f_{r-1} + e + f'_{s+1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} f'_{s+2} & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} f'_{n-1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} t \\ 0 \end{pmatrix} = \begin{pmatrix} P \\ Q \end{pmatrix},$$

where t is either b or c, depending on the parity of n-s.

PROOF. From (2) we have

$$\begin{pmatrix} P \\ Q \end{pmatrix}$$

$$= \begin{pmatrix} f_1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} f_{r-1} & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & e \end{pmatrix} \begin{pmatrix} b & 0 \\ 0 & c \end{pmatrix} \begin{pmatrix} f_{s+1} & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} f_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} f_1 & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} f_{r-1} & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} f_{r+1} & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \cdot \begin{pmatrix} f_n' & 1 \\ 1 & 0 \end{pmatrix}$$

which readily implies (4).

LEMMA 2. Let $f_1, \dots, f_n \in R$, $f_1 \in K$, $f_n \in K$, n > 1. Define $[f_i, \dots, f_n] \sim P_i/Q_i$, $1 \le i \le n$. If both P_1 and Q_1 lie in K, then there exists a run of consecutive elements f_r, \dots, f_s $(1 < r \le s < n)$ such that (3) holds.

PROOF. Suppose that for every run of consecutive elements f_r, \dots, f_s which lie in K, we have $[f_r, \dots, f_s] \sim a/b$ with $a \neq 0$. We shall obtain a contradiction. Using (2), we have

$$P_i = f_i P_{i+1} + Q_{i+1}, \qquad Q_i = P_{i+1}, \qquad 1 \le i \le n-1.$$

Consequently

(5) If deg $P_i \leq \deg Q_i$, and if $f_i \in K$, then deg $P_{i+1} < \deg Q_{i+1}$.

Since deg $P_1 \leq \deg Q_1$, and $f_1 \notin K$, (5) shows that deg $P_2 < \deg Q_2$. If also $f_2 \notin K$, we have likewise: deg $P_3 < \deg Q_3$. We may continue this process until we reach the first of the elements f_1, f_2, \cdots which lies in K, say f_r ; then deg $P_r < \deg Q_r$. Let s be chosen so that $f_r, \cdots, f_s \in K$, $f_{s+1} \notin K$. By the supposition at the beginning of the proof, we have $[f_r, \cdots, f_s] \sim a/b$ with $a \neq 0$. Setting

$$\begin{pmatrix} f_r & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} f_s & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix},$$

we have at once

$$P_r = aP_{s+1} + cQ_{s+1}, \qquad Q_r = bP_{s+1} + dQ_{s+1}.$$

Since deg $P_r < \deg Q_r$, surely deg $P_{s+1} > \deg Q_{s+1}$ is impossible. Hence deg $P_{s+1} \le \deg Q_{s+1}$.

We may therefore continue this process of descent, eventually obtaining deg $P_n \leq \deg Q_n$. However, $P_n = f_n$, $Q_n = 1$, and $f_n \in K$, so we have reached a contradiction. This completes the proof of the lemma.

We now prove the theorem stated in §1, by induction on k. The theorem obviously holds for k=1. Suppose it proved for $1 \le k \le n-1$, where $n \ge 2$, and suppose that $[f_1, \dots, f_n] \sim P/Q$, where both P and Q lie in K; we shall show that $[f_1^*, \dots, f_n^*] \sim P/Q$.

To begin with, assume that $f_1 \in K$. Then (2) implies

$$\begin{pmatrix} f_2 & 1 \\ 1 & 0 \end{pmatrix} \cdot \cdot \cdot \begin{pmatrix} f_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -f_1 \end{pmatrix} \begin{pmatrix} P \\ O \end{pmatrix}.$$

By the induction hypothesis this remains valid when each f_i $(1 \le i \le n)$ is replaced by f_i^* ; hence (2) also remains valid under this replacement.

Secondly, assume that $f_n \in K$. Since the result follows trivially from the induction hypothesis when $f_n = 0$, we need only consider the case where $f_n \neq 0$. Equation (2) may then be written as

$$\binom{P}{f_n^{-1} \ Q} = \binom{f_1 f_n \ 1}{1 \ 0} \binom{f_n^{-1} f_2 \ 1}{1 \ 0} \cdot \cdot \cdot \binom{f_n^{-1} f_{n-2} \ 1}{1 \ 0} \times \binom{f_{n-1} f_n + 1 \ 1}{1 \ 0} \binom{1}{0},$$

provided that n is even, with an analogous result for odd n. By the induction hypothesis, this remains valid under the substitution $f \rightarrow f^*$, which again implies the desired result.

We are thus left with the case where $n \ge 2$, $f_1 \in K$, $f_n \in K$, and $[f_1, \dots, f_n] \sim P/Q$ with both P and Q in K. By Lemma 2, there exists a run of consecutive elements f_r, \dots, f_s ($s \ge r$) satisfying (3). Keeping the notation of Lemma 1, equation (2) implies the validity of (4), with $t \ne 0$. Upon multiplying the successive quotients f'_n, \dots, f_1 in (4) by t or t^{-1} (according to the method used in the preceding paragraph), equation (4) reduces to an equation of type (2). This new equation of type (2) remains true under the substitution $f \rightarrow f^*$, as a consequence of the induction hypothesis. Therefore also (4) remains true under $f \rightarrow f^*$; as above, we deduce that the original equation (2) remains correct under the substitution $f \rightarrow f^*$. This completes the proof of the theorem.