DERIVATIONS IN PRIME RINGS ${ }^{1}$

EDWARD C. POSNER

We prove two theorems that are easily conjectured, namely: (1) In a prime ring of characteristics not 2 , if the iterate of two derivations is a derivation, then one of them is zero; (2) If d is a derivation of a prime ring such that, for all elements a of the ring, $a d(a)-d(a) a$ is central, then either the ring is commutative or d is zero.

Definition. A ring R is called prime if and only if $x a y=0$ for all $a \in R$ implies $x=0$ or $y=0$.

From this definition it follows that no nonzero element of the centroid has nonzero kernel, so that we can divide by the prime p, unless $p x=0$ for all x in R, in which case we call R of characteristic p.

A known result that will be often used throughout this paper is given in

Lemma 1. Let d be a derivation of a prime ring R and a be an element of R. If ad $(x)=0$ for all $x \in R$, then either $a=0$ or d is zero.

Proof: In $\operatorname{ad}(x)=0$ for all $x \in R$, replace x by $x y$. Then

$$
a d(x y)=0=a d(x) y+a x d(y)=a x d(y)=0
$$

for all $x, y \in R$. If d is not zero, that is, if $d(y) \neq 0$ for some $y \in R$, then, by the definition of a prime ring, $a=0$.

The following lemma may have some independent interest.
Lemma 2. Let R be a prime ring, and let p, q, r be elements of R such that paqar $=0$ for all a in R. Then one, at least, of p, q, r is zero.

Proof. In paqar $=0$, replace a by $a+b$; using paqar $=p b q b r=0$, we find paqbr $+p b q a r=0$, for all a, b in R. If now $p a=0$, then, for all b in R, pbqar $=0$, so that $p=0$, or else $q a r=0$. But if $p a=0$, then pat $=0$ for all $t \in R$, so that $p=0$ or qatr $=0$ for all t in R; again $r=0$, or else $q a=0$. So $p=0$ or $r=0$ or $q a$ is zero whenever $p a$ is zero; replace a by aqar; since $p(a q a r)=0$ for all $a \in R$, we see that $p=0$ or $r=0$ or qaqar $=0$ for all $a \in R$. Similarly, $p=0$ or $r=0$ or qaqaq $=0$ for all $a \in R$. Assuming therefore that $p \neq 0, r \neq 0$, replace a by $a+b$ in $q a q a q=0$ to find as before that $q a q b q+q b q a q=0$. In this equation, replace b by $a q b$ to find

[^0]$(q a q a q) b q+q a q b q a q=0,(q a q) b(q a q)=0$, for all $b \in R$, for all $a \in R$. So $q a q=0$ for all $a \in R, q=0$ if $p \neq 0, r \neq 0$.

Theorem 1. Let R be a prime ring of characteristic not 2 and d_{1}, d_{2} derivations of R such that the iterate $d_{1} d_{2}$ is also a derivation; then one at least of d_{1}, d_{2} is zero.

Proof. $d_{1} d_{2}$ is a derivation, so

$$
d_{1} d_{2}(a b)=d_{1} d_{2}(a) b+a d_{1} d_{2}(b) .
$$

However, d_{1}, d_{2} are each derivations so

$$
\begin{aligned}
d_{1} d_{2}(a b) & =d_{1}\left(d_{2}(a b)\right)=d_{1}\left(d_{2}(a) b+a d_{2}(b)\right) \\
& =d_{1} d_{2}(a) b+d_{2}(a) d_{1}(b)+d_{1}(a) d_{2}(b)+a d_{1} d_{2}(b) .
\end{aligned}
$$

But $d_{1} d_{2}(a b)=d_{1} d_{2}(a) b+a d_{1} d_{2}(b)$, so

$$
\begin{equation*}
d_{2}(a) d_{1}(b)+d_{1}(a) d_{2}(b)=0 \quad \text { for all } a, b \in R . \tag{1}
\end{equation*}
$$

Replace a by $a d_{1}(c)$ in (1).

$$
d_{2}\left(a d_{1}(c)\right) d_{1}(b)+d_{1}\left(a d_{1}(c)\right) d_{2}(b)=0
$$

for all $a, b, c \in R$.

$$
d_{2}(a) d_{1}(c) d_{1}(b)+a d_{2} d_{1}(c) d_{1}(b)+d_{1}(a) d_{1}(c) d_{2}(b)+a d_{1}^{2}(c) d_{2}(b)=0 .
$$

Now $\quad a\left(d_{2}\left(d_{1}(c)\right) d_{1}(b)+d_{1}\left(d_{1}(c)\right) d_{2}(b)\right)=0$, since $\quad d_{2}\left(d_{1}(c)\right) d_{1}(b)+d_{1}$ $\cdot\left(d_{1}(c)\right) d_{2}(b)=0$, which is merely equation (1) with a replaced by $d_{1}(c)$. We are left, then, with

$$
\begin{equation*}
d_{2}(a) d_{1}(c) d_{1}(b)+d_{1}(a) d_{1}(c) d_{2}(b)=0 \quad \text { for all } a, b, c \in R \tag{2}
\end{equation*}
$$

But $d_{1}(c) d_{2}(b)=-d_{2}(c) d_{1}(b)$ by (1) with c replacing a. Then (2) becomes $d_{2}(a) d_{1}(c) d_{1}(b)-d_{1}(a) d_{2}(c) d_{1}(b)=0$; factoring out $d_{1}(b)$ on the right, we have $\left(d_{2}(a) d_{1}(c)-d_{1}(a) d_{2}(c)\right) d_{1}(b)=0$ for all $b \in R$, for all a, $c \in R$. Lemma 1 is just what we need to tell us that $d_{2}(a) d_{1}(c)$ $-d_{1}(a) d_{2}(c)=0$ for all $a, c \in R$, unless d_{1} is zero. But (1) with c replacing b tells us that instead $d_{2}(a) d_{1}(c)+d_{1}(a) d_{2}(c)=0$ for all $a, c \in R$. Adding these last two equations, we find that $2 d_{2}(a) d_{1}(c)=0$, $d_{2}(a) d_{1}(c)=0$, (since R is not of characteristic 2), for all $a, c \in R$, or else d_{1} is zero. Using Lemma 1 again with $d_{2}(a)$ replacing a, we find that d_{1} is zero or else $d_{2}(a)=0$ for all $a \in R$, i.e. $d_{1}=0$ or $d_{2}=0$.

In order to prove Theorem 2, we find it necessary to prove the following lemma.

Lemma 3. Let R be a prime ring, and d a derivation of R such that $\operatorname{ad}(a)-d(a) a=0$ for all $a \in R$. Then R is commutative, or d is zero.

Proof. $(a+b) d(a+b)-(d(a+b))(a+b)=0$ for all $a, b \in R$; subtracting $a d(a)-d(a) a+b d(b)-d(b) b=0$ from this, we arrive at $a d(b)+b d(a)-d(a) b-d(b) a=0$ for all $a, b \in R$. Write this as

$$
a d(b)-d(a) b=d(b) a-b d(a)
$$

Add to this $a d(b)+d(a) b=d(a b)$ to find

$$
\begin{equation*}
2 a d(b)=d(b) a-b d(a)+d(a b) \quad \text { for all } a, b \in R \tag{3}
\end{equation*}
$$

In (3), replace b by $a x$

$$
2 a d(a x)=d(a x) a-a x d(a)+d\left(a^{2} x\right)
$$

or

$$
2 a d(a) x+2 a^{2} d(x)=d(a) x a+a d(x) a-a x d(a)+2 a d(a) x+a^{2} d(x)
$$ since $d\left(a^{2}\right)=2 a d(a)$; or

$$
\begin{equation*}
a^{2} d(x)=d(a) x a+a d(x) a-\operatorname{axd}(a) \quad \text { for all } a, x \in R \tag{4}
\end{equation*}
$$

In (3), replace b by $x a$, and find similarly

$$
\begin{equation*}
d(x) a^{2}=a d(x) a+\operatorname{axd}(a)-d(a) x a, \quad \text { for all } a, x \in R \tag{5}
\end{equation*}
$$

Add (4) and (5).

$$
\begin{equation*}
a^{2} d(x)+d(x) a^{2}=2 a d(x) a \quad \text { for all } a, x \in R \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
a(d(x) a-a d(x))=(d(x) a-a d(x)) a \quad \text { for all } a, x \in R \tag{7}
\end{equation*}
$$

Replace in (7) a by $a+d(x)$; we find that $d(x)$ commutes with $d(x) a-a d(x)$, for all $a \in R$, for all x in R; this says that the square of the inner derivation by x is zero, for all $x \in R$. Let R not be of characteristic 2. Then Theorem 1 says that $d(x)$ is central, for all x in R; let a be an element of R, and A denote inner derivation by a. $a d(x)$ $=d(x) a$, or $A d(x)=0$ for all $x \in R$. Theorem 1 again shows that $d=0$ or, if not, then A is zero, every a in R is central, R is commutative. But if R is of characteristic 2 , (6) says that for all $x \in R, d(x)$ commutes with all squares of elements of R. Let R be a prime ring of characteristic 2 , and let $e \in R$ commute with a^{2}, for all $a \in R$.

$$
\begin{equation*}
a^{2} e=e a^{2} \quad \text { for all } a \in R \tag{8}
\end{equation*}
$$

Replace a by $a+b$ and use $e a^{2}=a^{2} e, e b^{2}=b^{2} e$.

$$
\begin{equation*}
(a b+b a) e=e(a b+b a) \quad \text { for all } a, b \in R \tag{9}
\end{equation*}
$$

In (9), replace b by $a e$ and commute e and a^{2}; then $a^{2} e^{2}+a e a e=e a^{2} e$ +eaea; $a^{2} e^{2}=e a^{2} e$, so

$$
a e a e=e a e a
$$

for all $a \in R$.
In (9), replace b by e; then $a e^{2}+e a e=e a e+e^{2} a$,

$$
\begin{equation*}
e^{2} \text { is in the center of } R \text {. } \tag{11}
\end{equation*}
$$

Consider $(a e+e a)^{2}=a e a e+e a e a+a e^{2} a+e a^{2} e$. But aeae $+e a e a=0$ by (10), $a e^{2} a+e a^{2} e=e^{2} a^{2}+e^{2} a^{2}=0$ by (11) and (8). We have

$$
\begin{equation*}
(a e+e a)^{2}=0 \quad \text { for all } a \in R \tag{12}
\end{equation*}
$$

Let x, y now be elements of R with $x y=0$. By (9), $(x y+y x) e$ $=e(x y+y x)$, so

$$
\begin{equation*}
x y=0 \text { implies } y x e=e y x \tag{13}
\end{equation*}
$$

Now $x^{2} y=0$, so (13) becomes also $y x^{2} e=e y x^{2} ; y x^{2} e=y e x^{2}$ since e commutes with all squares. Thus

$$
\begin{equation*}
x y=0 \text { implies }(y e+e y) x^{2}=0 \tag{14}
\end{equation*}
$$

But $(a x) y=0$ for all $a \in R$; then we can replace x by $a x$ in (14), to obtain ($y e+e y$) axax $=0$ for all $a \in R$, whenever $x y=0$. Lemma 2 now says $x=0$ or $y e+e y=0$; in fact, since $x(y v)=0$ for all $v \in R$, Lemma 2 even says $x=0$ or $y v e+(e y) v=0$ for all $v \in R$. Since $y e=e y$ if $x \neq 0$, then $x=0$ or $y v e+y e v=0$ for all $v \in R, y(v e+e v)=0$ for all $v \in R$. Lemma 1 applied to the inner derivation by e shows that either $x=0, y=0$, or e is central. But by (12) $(a e+e a)(a e+e a)=0$, for all $a \in R$; putting $x=a e+e a, y=a e+e a$, we find that for all $a \in R$, $a e+e a=0$, or e is central. That is, for all $a \in R, a e+e a=0, e$ is central if e commutes with all squares in R.

For all $x \in R$, then, $d(x)$ commutes with all squares in $R, d(x)$ is central for all $x \in R$. Let $d(b)=0$; for all $a \in R, d(a b)=d(a) b+a d(b)$ $=d(a) b ; d(a b)$ is central, so $d(a) b$ is central for all a in R if $d(b)=0$. Now if d is not zero, so that $d(a) \neq 0$ for some $a \in R$, we have $d(a) b x$ $=x d(a) b ; d(a)$ is central so $x d(a) b=d(a) x b$, whence $d(a)(b x+x b)=0$ for all $x \in R$, if $d(b)=0$. But as previously remarked, no nonzero element of the centroid of R has nonzero kernel; since we are assuming $d(a) \neq 0$, and since $d(a)$ is central, we have proved that b is central whenever $d(b)=0$. But for all $c \in R, d\left(c^{2}\right)=d(c) c+c d(c)=2 d(c) c=0$, so c^{2} commutes with all x in R, for all $c \in R$. Referring back to the conclusion of the previous paragraph with x for e shows x central for all $x \in R$, if d is not the zero derivation.

The following lemma may also be of independent interest.
Lemma 4. ${ }^{2}$ Let A be a Lie ring, I an ideal of A, d an element of A such

[^1]that $d x \cdot x=0$ for all $x \in I$. Then for all $a \in R,(d a \cdot x) x=0$ for all $x \in I$ (i.e. the set of d satisfying $d x \cdot x=0$ for all $x \in I$ is an ideal of A).

Proof. Let R_{a} denote right multiplication by a. We want to prove $d\left(R_{a} R_{x}^{2}\right)=0$ for all $a \in A, x \in I$. The Jacobi identity for a Lie ring may be written as $R_{a x}=R_{a} R_{x}-R_{x} R_{a}$. Furthermore, since I is an ideal, it contains $a x$, and $x+a x$, for all $a \in A$, so that $(d \cdot a x) a x=0,(d(x+a x))$ $\cdot(x+a x)=0$ for all $a \in A$. From these two equations, and from $d x \cdot x=0$, we get $d x \cdot a x+(d \cdot a x) \cdot x=0$ for all $a \in A, x \in I$, or, in the other notation, $d\left(R_{x} R_{a x}+R_{a x} R_{x}\right)=0$. But from

$$
\begin{aligned}
d\left(R_{x} R_{a x}+\right. & \left.R_{a x} R_{x}\right)=d\left(R_{x}\left(R_{a} R_{x}-R_{x} R_{a}\right)+\left(R_{a} R_{x}-R_{x} R_{a}\right) R_{x}\right) \\
& =d\left(R_{x} R_{a} R_{x}-R_{x}^{2} R_{a}+R_{a} R_{x}^{2}-R_{x} R_{a} R_{x}\right)=d\left(R_{a} R_{x}^{2}-R_{x}^{2} R_{a}\right)
\end{aligned}
$$

$d\left(R_{a} R_{x}^{2}-R_{x}^{2} R_{a}\right)=0$ for all $a \in A, x \in I$. By hypothesis, $d\left(R_{x}^{2}\right)=0$, so that $d\left(R_{a} R_{x}^{2}\right)=0$ for all $a \in A, x \in I$. This is exactly what we had to prove.

We are now ready for Theorem 2 .
Theorem 2. Let R be a prime ring and d a derivation of R such that, for all $a \in R, a d(a)-d(a) a$ is in the center of R. Then, if d is not the zero derivation, R is commutative.

Proof. Let A be the Lie ring of derivations of R and I the ideal of A consisting of inner derivations. Let, for $a \in R, I_{a}$ denote inner derivation by a. Let $\left[d_{1}, d_{2}\right]$ for $d_{1}, d_{2} \in A$ denote the (commutator) product of derivations in A. We are assuming $\left[\left(d, I_{a}\right), I_{a}\right]=0$. By the preceding lemma, for all $x \in R$, that is, for all $I_{x} \in I$, $\left[\left[\left[d, I_{x}\right] I_{a}\right] I_{a}\right]=0$ for all $a \in R$. That is, $a(a d(x)-d(x) a)-(a d(x)$ $-d(x) a) a$ is central for all $x, a \in R$,

$$
\begin{equation*}
a^{2} d(x)+d(x) a^{2}-2 a d(x) a \text { is central for all } x, a \in R \tag{15}
\end{equation*}
$$

Commute (15) with a.

$$
\begin{equation*}
3 a d(x) a^{2}+a^{3} d(x)=3 a^{2} d(x) a+d(x) a^{3} \tag{16}
\end{equation*}
$$

Suppose R is of characteristic 3. Then for all $a \in R, I_{a}{ }^{3} d=0$. Theorem 1 says that d is zero, or else every a^{3} is in the center of R; if this is the case, then for all $a, b \in R,(a+b)^{3}-a^{3}-b^{3}=a^{2} b+a b a+b a^{2}+b^{2} a+b a b$ $+a b^{2}$ is central; replace a by $-a$ to find $a^{2} b+a b a+b a^{2}-\left(b^{2} a+b a b+a b^{2}\right)$ central for all $a, b \in R$; adding these last two and dividing by 2 , we see that $a^{2} b+a b a+b a^{2}$ is central, for all $a, b \in R$. Replace b by $a b$: $a^{3} b+a^{2} b a+a b a^{2}=a\left(a^{2} b+a b a+b a^{2}\right)$ is central; if $a^{2} b+a b a+b a^{2}$ is not zero, given a, for some b, then, since it is central, we can divide by it, whence a would be central. So assume that R has the property that
for all $a, b \in R, a^{2} b+a b a+b a^{2}=0$. This reads, since R is of characteristic 3 , as $a(a b-b a)-(a b-b a) a=0$ for all $b \in R, I_{a}^{2}=0$; by Theorem $1, a$ is central, R is commutative.

Suppose now that R is of characteristic different from 3. Write $d(x)=x^{\prime}$. In (16), replace x by $a: 3 a a^{\prime} a^{2}+a^{3} a^{\prime}-3 a^{2} a^{\prime} a-a^{\prime} a^{3}=0$, or $a^{3} a^{\prime}-a^{\prime} a^{3}=3 a^{2} a^{\prime} a-3 a a^{\prime} a^{2}=3 a\left(a a^{\prime}-a^{\prime} a\right) a$. Since $a a^{\prime}-a^{\prime} a$ is central by the hypothesis of this theorem, we find

$$
\begin{equation*}
a^{3} a^{\prime}-a^{\prime} a^{3}=3\left(a a^{\prime}-a^{\prime} a\right) a^{2}, \quad \text { for all } a \in R \tag{17}
\end{equation*}
$$

Furthermore, $\left(a a^{\prime}-a^{\prime} a\right) a=a a^{\prime} a-a^{\prime} a^{2}$. But $\left(a a^{\prime}-a^{\prime} a\right) a=a\left(a a^{\prime}-a^{\prime} a\right)$ $=a^{2} a^{\prime}-a a^{\prime} a$; adding these last two, we obtain

$$
\begin{equation*}
2\left(a a^{\prime}-a^{\prime} a\right) a=a^{2} a^{\prime}-a^{\prime} a^{2} \tag{18}
\end{equation*}
$$

In (16), replace x by $a x^{\prime}$.

$$
\begin{aligned}
3 a^{2} x^{\prime \prime} a^{2}+a^{4} x^{\prime \prime} & -3 a^{3} x^{\prime \prime} a-a x^{\prime \prime} a^{3}+3 a a^{\prime} x^{\prime} a^{2}+a^{3} a^{\prime} x^{\prime} \\
& -3 a^{2} a^{\prime} x^{\prime} a-a^{\prime} x^{\prime} a^{3}=0
\end{aligned}
$$

However,

$$
\begin{aligned}
& 3 a^{2} x^{\prime \prime} a^{2}+a^{4} x^{\prime \prime}-3 a^{3} x^{\prime \prime} a-a x^{\prime \prime} a^{3} \\
&=a\left(3 a x^{\prime \prime} a^{2}+a^{3} x^{\prime \prime}-3 a^{2} x^{\prime \prime} a-x^{\prime \prime} a^{3}\right)=0
\end{aligned}
$$

as is seeen from (16) by replacing x by x^{\prime}. So

$$
\begin{equation*}
3 a a^{\prime} x^{\prime} a^{2}+a^{3} a^{\prime} x^{\prime}-3 a^{2} a^{\prime} x^{\prime} a-a^{\prime} x^{\prime} a^{3}=0 \quad \text { for all } x, a \in R \tag{19}
\end{equation*}
$$

Multiply (16) on the left by a^{\prime}.

$$
\begin{equation*}
3 a^{\prime} a x^{\prime} a^{2}+a^{\prime} a^{3} x^{\prime}-3 a^{\prime} a^{2} x^{\prime} a-a^{\prime} x^{\prime} a^{3}=0 \tag{20}
\end{equation*}
$$

Subtract (20) from (19) :

$$
\begin{aligned}
& 3\left(a a^{\prime}-a^{\prime} a\right) x^{\prime} a^{2}+\left(a^{3} a^{\prime}-a^{\prime} a^{3}\right) x^{\prime}-3\left(a^{2} a^{\prime}-a^{\prime} a^{2}\right) x^{\prime} a=0 \\
& \text { for all } x, a \in R
\end{aligned}
$$

Using (17) and (18), we arrive at, after dividing by 3 ,

$$
\left(a a^{\prime}-a^{\prime} a\right)\left(x^{\prime} a^{2}+a^{2} x^{\prime}-2 a x^{\prime} a\right)=0 \quad \text { for all } x, a \in R
$$

If $a a^{\prime}-a^{\prime} a \neq 0$ for some a, then for that a, and all x,

$$
\begin{equation*}
x^{\prime} a^{2}+a^{2} x^{\prime}-2 a x^{\prime} a=0 \tag{21}
\end{equation*}
$$

Replace x by $a x$ in (21):

$$
a x^{\prime} a^{2}+a^{3} x^{\prime}-2 a^{2} x^{\prime} a+a^{\prime} x a^{2}+a^{2} a^{\prime} x-2 a a^{\prime} x a=0
$$

since

$$
a x^{\prime} a^{2}+a^{3} x^{\prime}-2 a^{2} x^{\prime} a=a\left(x^{\prime} a^{2}+a^{2} x^{\prime}-2 a x^{\prime} a\right)=0
$$

by (21), we have

$$
\begin{equation*}
a^{\prime} x a^{2}+a^{2} a^{\prime} x-2 a a^{\prime} x a=0 \quad \text { for all } x \in R \tag{22}
\end{equation*}
$$

Now in (21) replace x by $a: a^{\prime} a^{2}+a^{2} a^{\prime}-2 a a^{\prime} a=0$. Multiply this on the right by x.

$$
\begin{equation*}
a^{\prime} a^{2} x+a^{2} a^{\prime} x-2 a a^{\prime} a x=0 \quad \text { for all } x \in R \tag{23}
\end{equation*}
$$

Subtract (23) from (22).

$$
\begin{equation*}
a^{\prime}\left(x a^{2}-a^{2} x\right)-2 a a^{\prime}(x a-a x)=0 \quad \text { for all } x \in R \tag{24}
\end{equation*}
$$

Replace x by $a x$ in (24).

$$
\begin{equation*}
a^{\prime} a\left(x a^{2}-a^{2} x\right)-2 a a^{\prime} a(x a-a x)=0 \quad \text { for all } x \in R \tag{25}
\end{equation*}
$$

Multiply (24) by a on the left.

$$
\begin{equation*}
a a^{\prime}\left(x a^{2}-a^{2} x\right)-2 a^{2} a^{\prime}(x a-a x)=0 \quad \text { for all } x \in R \tag{26}
\end{equation*}
$$

Subtract now (25) from (26):
$\left(a a^{\prime}-a^{\prime} a\right)\left(x a^{2}-a^{2} x\right)-2 a\left(a a^{\prime}-a^{\prime} a\right)(x a-a x)=0 \quad$ for all $x \in R$.
Since $a a^{\prime}-a^{\prime} a \neq 0$,
(27) $\quad x a^{2}-a^{2} x-2 a(x a-a x)=0 \quad$ for all $x \in R$ if $a a^{\prime}-a^{\prime} a \neq 0$.

So $x a^{2}+a^{2} x-2 a x a=0, a(a x-x a)=(a x-x a) a, I_{a}^{2}=0$. That is, a is central by Theorem 1 or else $a a^{\prime}=a^{\prime} a$, if R is of characteristic different from 2. So when R is of characteristic not $2, a a^{\prime}=a^{\prime} a$ for all $a \in R$; Lemma 3 now finishes the proof. Let R finally be of characteristic 2 . (27) says $a a^{\prime}=a^{\prime} a$ or else a^{2} is central, for all $a \in R$. If $a a^{\prime} \neq a^{\prime} a$ for some $a \in R, a^{2}$ is central and not zero. For if $a^{2}=0$ then $\left(a^{2}\right)^{\prime}$ $=a a^{\prime}+a^{\prime} a=0, a a^{\prime}=a^{\prime} a$. Then a is not a divisor of zero, since if $y a=0, y a^{2}=0, y=0$. Let $x \in R$; we shall prove that $a a^{\prime}$ commutes with x^{2}. Either $(a x a)^{2}$ is central, or $(a x a)(a x a)^{\prime}=(a x a)^{\prime}(a x a)$. If $(a x a)^{2}$ is central, $a x a^{2} x a$ is in the center of R. Then $a x^{2} a$ is in the center of R, since a^{2} is; call it c. Then $a c a=a^{2} c$ is in the center of R, and equals $a^{2} x^{2} a^{2}$. So $a^{2} x^{2} a^{2}$ is in the center of R, and so is x^{2}, whence x^{2} commutes with $a a^{\prime}$ if $(a x a)^{2}$ is central. On the other hand, if x^{2} is not central, then $x x^{\prime}=x^{\prime} x$ and $(a x a)(a x a)^{\prime}=(a x a)^{\prime}(a x a)$. Then (axa) $\cdot\left(a^{\prime} x a+a x^{\prime} a+a x a^{\prime}\right)=\left(a^{\prime} x a+a x^{\prime} a+a x a^{\prime}\right) a x a$, or

$$
a x a a^{\prime} x a+a x a^{2} x^{\prime} a+a x a^{2} x a^{\prime}=a^{\prime} x a^{2} x a+a x^{\prime} a^{2} x a+a x a^{\prime} a x a
$$

Now a^{2} is central, whence

$$
a x\left(a a^{\prime}+a^{\prime} a\right) x a+\left(a\left(x x^{\prime}+x^{\prime} x\right) a+a x^{2} a^{\prime}+a^{\prime} x^{2} a\right) a^{2}=0 .
$$

But $x x^{\prime}+x^{\prime} x=0$, and $a a^{\prime}+a^{\prime} a$ is central so that

$$
\left(a a^{\prime}+a^{\prime} a\right) a x^{2} a+\left(a x^{2} a^{\prime}+a^{\prime} x^{2} a\right) a^{2}=0
$$

Since a is not a right zero divisor,

$$
\begin{aligned}
& \left(a a^{\prime}+a^{\prime} a\right) a x^{2}+\left(a x^{2} a^{\prime}+a^{\prime} x^{2} a\right) a=0 \\
& a x^{2}\left(a a^{\prime}+a^{\prime} a\right)+\left(a x^{2} a^{\prime}+a^{\prime} x^{2} a\right) a=0 \\
& a x^{2} a a^{\prime}+a x^{2} a^{\prime} a+a x^{2} a^{\prime} a+a^{\prime} x^{2} a^{2}=0
\end{aligned}
$$

Thus $a x^{2} a a^{\prime}+a^{\prime} x^{2} a^{2}=0 ; a^{2}$ is central so $a x^{2} a a^{\prime}+a^{2} a^{\prime} x^{2}=0 ; a$ is not a left divisor of zero so $x^{2} a a^{\prime}+a a^{\prime} x^{2}=0$, for any x such that x^{2} is not central, hence, for all $x \in R$, as promised; otherwise $a a^{\prime}=a^{\prime} a$. Recourse to the latter part of Lemma 3 shows a^{2} central and $a a^{\prime}$ central or else $a a^{\prime}=a^{\prime} a$. But in the former case, $a \cdot a a^{\prime}=a a^{\prime} \cdot a$; since a is not a zero divisor, $a a^{\prime}=a^{\prime} a$, for all $a \in R$. Lemma 3 completes the proof.

The University of Chicago and
Bell Telephone Laboratories, New York

[^0]: Presented to the Society February 23, 1957; received by the editors February 7, 1957.
 ${ }^{1}$ This paper was sponsored in part by the Office of Ordnance Research, United States Army, under contract DA-11-022-ORD-1571.

[^1]: ${ }^{2}$ An oral communication from Professor Kaplansky.

