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1. Given any associative ring A one can construct from its opera-

tions and elements a new ring, the Jordan ring of A, by defining the

product in this ring to be a o b = ab+ba for all a, b^A, where the

product ab signifies the product of a and b in the associative ring A

itself.

If R is any ring, associative or otherwise, by a derivation of R we

shall mean a function, ', mapping R into itself so that

(1) (r + s)' = r' + s',

(2) (rs)' = r's + rs'

for all r, s(ER.

By a Jordan derivation, ', of an associative ring A we shall mean a

derivation of the Jordan ring formed from A; that is, for all a, b£zA,

(a o b)'=a' o b-\-a o V. Writing this out in terms of the associative

operations of A, a Jordan derivation, ', of A is an additive mapping

which satisfies (ab-\-ba)'=a'b-\-ab''-\-b'a-\-ba' for all a, b(EA.

In this paper we show that for a rather wide class of rings, namely

prime rings of characteristic different from 2 (i.e. 2x = 0 implies x — 0)

a Jordan derivation of A is automatically an ordinary derivation of

A. The converse is, of course, trivially true. In the last part of the

paper we modify the definition of a Jordan derivation in such a way

that the definition given above is still the definition if the ring has

characteristic different from 2, but which, in characteristic 2, (except

for a very special case) enables us to obtain the result that a Jordan

derivation, irrespective of the characteristic, is an ordinary deriva-

tion whenever the ring is a prime ring.

For most of this paper all rings considered will be of characteristic

not 2; for such rings A a Jordan derivation, ', can be defined by

(1) (a + bY = a' + b',

(2) (a2)' = aa' + a'a

for all a, b^A.
If a mapping * satisfied {a-\-b)* = a* + b* and (ab)* = b*a+ba*, it

would certainly be a Jordan derivation but it would, in general, not
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be a derivation. Let us call such a mapping a reverse derivation. Since

our aim is to show that Jordan derivations are, for prime rings, co-

incident with ordinary derivations, one of our first aims will be to

show that reverse derivations do not, in general, exist in prime rings.

We begin with a lemma which holds in any arbitrary associative

ring, namely,

Lemma 1.1. Let A be any ring; for a^A let T(a) = {r^A \ r(ax — xa)

= 0 for all x(E.A }. Then T(a) is a two-sided ideal of A.

Proof. Clearly T(a) is a left ideal of A. There remains but to show

that if u(E.T(a), xQA, then uxE:T(a). But then, for all r£.A,

u(axr — xra) =0. Thus u{ (ax — xa)r-\-x(ar — ra)} =0. Since u£.T(a),

u(ax — xa) =0, and so we have that ux(ar — ra) =0 for all r£zA. But

then ux£zT(a), whereby the lemma is proved.

We recall a ring A is said to be a prime ring if xAy = (0) for x, y(EA

implies that either x = 0 or y = 0. Equivalently, a prime ring is one

where the right annihilator of a nonzero right ideal is merely (0).

We now have

Lemma 1.2. If A is a prime ring and ifa(E.A is not in Z, the center of

A, then T(a) = (0).

Proof. Since aQZ, for some b^A, ab — bay^0. If T(a)y^(Q), then

since T(a)(ab — ba) = (0), the right ideal T(a) would be annihilated by

a nonzero element, which, by the definition of a prime ring, excludes

the possibility that T(a)^(0). So T(a) = (0).

2. Reverse derivations of prime rings. In this section we dispose of

the possibility of the occurrence of reverse derivations in prime rings

with

Theorem 2.1. Let A be a prime ring and suppose that * is a nonzero

reverse derivation of A. Then A is a commutative integral domain and *

is an ordinary derivation of A.

Proof. Let a, b, cG.A. Thus

(1) (a(bc))* = (bc)*a + (bc)a* = c*ba + cb*a + bca*.

Also

(2) {{ab)c)* = c*(ab) + c(ab)* = c*(ab) + cb*a + cba*.

However, a(bc) = (ab)c, so the results of (1) and (2) must be equal.

Thus, on comparing them, we obtain

(3) c*(ab - ba) = (be - cb)a*       for all a,b,cE A.
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If, in (3), we put i = cwe see that

(4) b*(ab - ba) = 0 for all a G A.

But then b*ET(b). Hence if b*?±0, T(b) must be different from

(0). By Lemma 1.2 this yields that 6£Z, the center of A. That is, if

bEA is such that 6*^0 then i£Z.

Suppose now that b(EA is such that b* = 0. Since * is not the zero

mapping, there is an a^A so that a*^0. By the paragraph above,

a£Z. Also (a + b)* = a*-\-b* = a*^0, so, again, a+b(E.Z. Conse-

quently it follows that 6£Z. Thus if b* = 0 or if b*9^0 the net result

is that 6£Z. Thus A =Z, so A must be commutative; since it is a

prime ring, it must then be a commutative integral domain. But then

(ab)* = b*a+ba* = ab*-\-a*b, so it is an ordinary derivation of A.

3. Jordan derivations of prime rings. The aim of this section is to

establish that any Jordan derivation of a prime ring of characteristic

5^2 is a derivation. We assume throughout this section that A is a

prime ring of characteristic ?^2.

Lemma 3.1. // ' is a Jordan derivation of A then for all a, b^A,

(aba)' =a'ba+ab'a+aba'.

Proof. Since (a2)' =aa'-\-a'a when we linearize this by replacing a

by a-\-b we obtain

(1) (ab + ba)' = a'b + ab' + b'a + ba'     for all a, b G A.

Consider W = (a(ab-\-ba) -\-{ab-\-ba)a)'. On the one hand, using (1)

we see that

W = a'(ab + ba) + a{ab + ba)' + (ab + ba)'a + (ab + ba)a'

= a'ab + a'ba + a(a'b + ab' + b'a + ba') + (a'b + ab' + b'a + ba')a

+ (ab + ba)a'

= a'ab + la'ba + aa'b + a2b' + laba! + lab'a + baa! + b'a2 + ba'a.

On the other hand,

W = \(a2b + ba2) + laba]' = (a2)'b + a2b' + b'a2 + b(a2)' + l(aba)'

= a'ab + aa'b + a2b' + b'a2 + baa' + ba'a + l(aba)'.

Comparing the two expressions, so obtained, for W we arrive at

l(aba)' = l(a'ba+ab'a-\-aba'), and since the characteristic of A is not

2, (aba)' — a'ba-j-ab'a+aba', which is the contention of the lemma.

We linearize the result of Lemma 3.1 by replacing a by a-f-c and

so arrive at
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Lemma 3.2. For all a, b, c(EA, (abc+cba)'= a'bc-\-c'ba+ab'c-\-cb'a

+abc'-\-cba'.

We now turn to the key

Lemma 3.3. For all a, b^A, ((ab)'—a'b—ab')(ab — ba) =0.

Proof. Consider W=(ab(ab) + (ab)ba)'. Using Lemma 3.2, with

c = ab we obtain

W = (ab)(ab)' + (ab)ba' + ab'(ab) + (ab)b'a + a'b(ab) + (ab)'ba.

However,

W = ((ab)2 + ab2a)' = ((aft)2)' + (ab2a)'

= (ab)(ab)' + (ab)'(ab) + a'b2a + a(b2)'a + ab2a'

= (ab)(ab)' + (ab)'ab + a'b2a + abb'a + ab'ba + ab2a'

by Lemma 3.1.

Comparing the two expressions so obtained for W, we see that

ab'(ab) + a'b(ab) + (ab)'(ba) = (ab)'(ab) + a'b2a + ab'(ba).

Transposing and collecting terms, it follows that

((ab)' - a'b - ab')(ab - ba) = 0.

On linearizing the result of Lemma 3.3 we reach

Lemma 3.4. For all a, b, c£.A

(1) {(ab)' - a'b - ab'}(cb - be) + {(cb)' - c'b - cb'}(ab - ba) = 0

and

(2) {(ab)' - a'b - ab'\(ca - ac)  - {(ca)' - c'a - ca'}(ba - ab) = 0.

Suppose that ab = ba. The first identity in the statement of Lemma

3.4 then reduces to ((ab)'—a'b — ab')(cb — bc)=0 for all c(ElA. Thus

(ab)'-a'b-ab'£.T(b). If bQZ, by Lemma 1.2, T(b) = (0) and so it
would follow that (ab)'—a'b—ab' = 0. Similarly, using the second

identity in the statement of Lemma 3.4, if aGZ it would follow that

(ab)'—a'b — ab' = 0. So suppose that both a, b^Z. If A =Z, that is,

if A is commutative, then since (ab+ba)' =a'b+ab'+b'a-\-ba',

2(ab)' = 2(a'b+ab') for all a, b£.A and so (ab)'= a'b+ab'. So we sup-

pose that A 7±Z. Then there is a c£.A, ct^Z. From the above, since

cQ_Z, a+c(£Z, and since be = cb, b(a+c) = (a+c)b, (cb)' = c'b+cb',

(cb+ab)' = ((c+a)b)' = (c+a)'b + (c+a)b' = c'b+cb'+a'b+ab'. Thus

we conclude here also that (ab)' =a'b-\-ab'. We have proved
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Lemma 3.5. If a, b(zA and if ab — ba then (ab)' ^a'b+ab'.

Lemma 3.6. If a, b(E.A and if ab = Q then 0 — (ab)'=a'b+ab'.

Proof. If ba = 0 then ab = ba = 0, which, by Lemma 3.5, implies

that 0 = (ab)'= a'b+ab'.

So we suppose that ba^O. By Lemma 3.4

(1) ((ab)' - a'b - ab')(ca - ac) + ((ca)' - c'a - ca')(ba - ab) = 0.

If we multiply (1) from the right by b, since ab = 0, it reduces to

(2) ((ab)' - a'b - ab')acb = 0 for all c £ A.

Since ba^O, b^O. Since we are in a prime ring (2) implies that

((ab)'—a'b—ab')a = 0. That is, since ab = 0,

(3) (a'b + ab')a = 0.

Now (3) holds for all b so that ab = 0. If ab = Q then for all r^A,

a(brb) =0. Using brb for b in (3) we have that (a'(brb) +a(brb)')a = 0.

By Lemma 3.1, (brb)'= b'rb+br'b + brb', so a(brb)'=ab'rb. Our rela-

tion then becomes (a'brb+ab'rb)a—0 for all r(E.A. That is,

(a'b-\-ab')rba = 0. Since we have assumed that ba^O and since we

are in a prime ring, we are now forced to conclude that a'b-\-ab' = 0.

This is the statement of Lemma 3.6, which is now thereby proved.

Corollary. If a, bE:A and if ab = 0 then (ba)' = b'a-\-ba'.

Proof. By Lemma 3.6, a'b+ab' = 0. But (ba)'= (ab+ba)'=a'b

+ab' + b'a + ba' = b'a + ba'.

Lemma 3.7. // a, b(E;A and if ab = 0 then for all cElA, ((ba)c)'

= (ba)'c+(ba)c'.

Proof. By Lemma 3.2, (cab + bac)'=c'ab-\-b'ac+ca'b+ba'c+cab'

-\-bac'. Since ab = 0, this reduces to

((ba)c)' = b'ac + ba'c + bac' + c(a'b + ab')

— b'ac + ba'c + bac' by Lemma 3.6

= (ba)'c + (ba)c' by the corollary to Lemma 3.6.

Let V= {a£^l| (ax)' =a'x-\-ax' for all xEA }. As we have seen by

Lemma 3.7, if ab = 0 then &a£ V.

For the sake of convenience of writing we introduce the symbol,

for a, bEA, of ab to mean ab=(ab)' = (ab)' — a'b—ab'.

We note:

(1) n^1 = ab + ac,
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(2) ab = - ba.

Property (2) is merely a restatement of the fact that ' is a Jordan

derivation of A. Our aim is to show that ab = 0 for all a, b(E:A.

Lemma 3.8. 7/<£ V and tQZ and if ut = tu then m£ V.

Proof. By Lemma 3.4

(1) ab(bc - cb) + cb(ab - ba) = 0.

If / = c£F then tb= -b' = 0 for all bEA. Thus, in this case, (1) re-

duces to

(2) ab(tb - bt) = 0 for all a, b £ A.

We linearize (2) with regard to b and obtain

(3) ab(tc - ct) + ac(tb - bt) = 0 for all a, b, c £ A.

If ut = tu, putting b = u in (3) we have

(4) au(lc — ct) = 0 for all a, c £ A.

Thus au<ET(t). Since /£Z, by Lemma 1.2, T(/) = (0), and so a" = 0

for all o£^4. Thus m" = 0 for all a£^4, from which it follows that

w£F.

Lemma 3.9. If a(E.A awrf a2 = 0 then a£ F.

Proof. Since a2 = 0, for all r£^4, a ar = 0. Thus, by Lemma 3.7,

(ar)a£V. If a = 0 it is clearly in V. If we assume that a^O, then

ara?^0 for some r£^4, by the primeness of A. But a(ara) = (ara)a = 0.

Since ara^O, (ara)2 = 0 and since A is a prime ring, ara£Z. Thus by

Lemma 3.8 with t = ara<E. V and u = a we obtain that a£ V.

Lemma 3.10. If c, d^V then ba(cd — dc)=Q for all a, 6£yl.

Proof. As in the proof of Lemma 3.8, since c, d£ F, ba(cd — dc)

+bd(ac-ca)=0. Since d£ V, bd = 0 and so ba(cd-dc)=0 for all

a, b€£A  results.

Suppose that «£vl satisfies m2 = 0. By Lemma 3.9, w£ F. If, in

addition x2 = 0, x is also in F. Thus by Lemma 3.10, b"(ux — xu) =0

for all a, 6£^4. If we multiply this from the right by u, using m2 = 0

we obtain

(1) bauxu = 0 for all a, b E A.

Now, for any c, d(EA,cd(cd — dc)=0, so, for any r£^4, ((cd — dc)rcd)i

= 0. In (1) let u=(cd-dc)rcd and let x=(ab-ba)sba. (1) then be-

comes
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(1)'        ba(cd - dc)rcd(ab - ba)sb"(cd - dc)rcd = 0        for all r, s £ A.

Thus {ba(cd-dc)rcd(ab-ba))s{bn(cd-dc)rcd(ab-ba)} =0, for all

r, sEA. Since 4 is a prime ring we must have that ba(cd — dc)rc"

■(ab — ba) =0 for all rEA. Thus, since A is a prime ring either ba(cd

— dc) =0 or cd(ab — ba) =0 for all a, b, c, dEA.

In particular, putting d = b, ba(cb — bc)=0 or ch(ab — ba)—Q for all

a, b, cEA.

However, by Lemma 3.4, ba(bc — cb)-\-cb(ab — ba)=0. Since, from

the above, one or the other of the terms on the left hand side of this

equation must always be 0, we can conclude that each is separately 0

for all choices of a, b, c. In consequence we have that b"(bc — cb)=0

for all a, b, cEA. Thus, for any a£A, baET(b). If 6£Z then T(b)
= (0) by Lemma 1.2; so, in that case b" = 0 for all aEA. On the other

hand, if 2>£Z, since ba = ab for all aEA, ba — Q by Lemma 3.5. So

for all b and a in A, ba = 0. That is, for all a, bEA, (ab)'-a'b-ab' = 0.

Thus we have proved

Theorem 3.1. If A is a prime ring of characteristic different from 2

then any Jordan derivation of A is an ordinary derivation of A.

4. Jordan derivations in prime rings of characteristic 2. If one

glances through the proofs of the lemmas leading up to Theorem 3.1

one notices that the fact that the characteristic is not 2 is used only in

two places, namely in the proof of Lemma 3.1 where we showed that

(aba)' = a'ba-\-ab'a-\-aba' and in the proof of Lemma 3.5 when we

needed to dispose of the case in which A was commutative.

If we redefine a Jordan derivation of any ring to be:

(1) (a + b)' = a' + b';

(2) (a2)' = aa! + a'a;

(3) (aba)' = a'ba + ab'a + aba'

then if the characteristic is not 2 we have not added any restriction

in assuming property (3) for it is a consequence of (1) and (2). But

now, with this new definition, and the remark of the paragraph above

we have

Theorem 4.1. Let A be a prime ring of characteristic 1. Then if A is

not a commutative integral domain, any Jordan derivation of A is an

ordinary derivation.
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