ON MONOTONE CONVERGENCE TO SOLUTIONS OF

$$u' = g(u, t)$$

RICHARD BELLMAN

1. **Introduction.** The purpose of this brief note is to show that Newton's method of successive approximation to the solution of a functional equation yields a monotone increasing sequence of approximations to the solution of the first order differential equation,

(1)
$$u' = g(u, t), \quad u(0) = c,$$

provided that g(u, t) is uniformly convex in u for t in some fixed interval $[0, t_0]$.

The connection between the methods and results presented here and the theory of dynamic programming is treated in [1].

2. Newton's method of approximation. Write

(1)
$$h(u, t) = \frac{\partial g}{\partial u}(u, t),$$

and consider the system of equations

(2)
$$(a) \quad \frac{du_0}{dt} = g(v_0, t) + (u_0 - v_0)h(v_0, t), \ u_0(0) = c,$$
(b)
$$\frac{du_{n+1}}{dt} = g(u_n, t) + (u_{n+1} - u_n)h(u_n, t), \ u_{n+1}(0) = c,$$

$$n = 0, 1, 2, \cdots,$$

where $v_0(t)$ is a known function of t which is taken to be continuous over $[0, t_0]$.

This is Newton's method of approximation applied to the differential equation of (1.1).

3. **Montonicity of convergence.** Let us now demonstrate the following result

THEOREM. Let h(u, t) exist, be continuous, and monotone increasing in u for $0 \le t \le t_0$. Then

(1)
$$u_0(t) \leq u_1(t) \leq \cdots \leq u_n(t) \leq \cdots, 0 \leq t \leq t_1,$$

where $t_1 > 0$. The limit $u(t) = \lim_{n \to \infty} u_n(t)$ is the solution of (1.1).

PROOF. We begin with the observation that the uniform convexity

Received by the editors March 13, 1957.

of g(u, t) yields the result that

(2)
$$g(u, t) = \max_{v} [g(v, t) + (u - v)h(v, t)]$$

for $0 \le t \le t_0$.

Hence

(3)
$$\frac{du_{n+1}}{dt} = g(u_n, t) + (u_{n+1} - u_n)h(u_n, t)$$

$$\leq g(v, t) + (u_{n+1} - v)h(v, t),$$

where v = v(t) is the function which maximizes the function $g(u, t) + (u_{n+1} - u)h(u, t)$. It follows that the solution of

(4)
$$\frac{dw}{dt} = g(v, t) + (w - v)h(v, t), w(0) = c,$$

majorizes the solution of

(5)
$$\frac{du_{n+1}}{dt} = g(u_n, t) + (u_{n+1} - u_n)h(u_n, t), u_{n+1}(0) = c,$$

within a common interval of existence, i.e. $w(t) \ge u_{n+1}(t)$.

Since the function v(t) which maximizes is $u_{n+1}(t)$, we see that the solution of (4) is precisely the function $u_{n+2}(t)$.

This argument showed that $u_1(t) \ge u_0(t)$ and, inductively, that (3.1) holds within a common interval of existence. That such an interval exists follows the usual lines, and similarly for the proof of convergence which is now equivalent to uniform boundedness of the sequence $\{u_n(t)\}$.

4. Multi-dimensional case. The proof presented above hinged on the fact that any function u(t) satisfying the inequality

(1)
$$\frac{du}{dt} \le a(t)u + b(t), \ u(0) = c,$$

is majorized by the solution of

(2)
$$\frac{dv}{dt} = a(t)v + b(t), \ v(0) = c.$$

The corresponding result for systems is not unreservedly true. If $\{x_i(t)\}$ is a set of functions satisfying

(3)
$$\frac{dx_i}{dt} \leq \sum_{i=1}^n a_{ij}(t)x_j + b_i(t), \ x_i(0) = c_i, \ i = 1, 2, \cdots, n,$$

it is not necessarily true that $x_i(t) \leq y_i(t)$, $i = 1, 2, \dots, n, t \geq 0$, where the $y_i(t)$ satisfy the equations

(4)
$$\frac{dy_i}{dt} = \sum_{j=1}^n a_{ij}(t)y_j + b_i(t), \ y_i(0) = c_i, \quad i = 1, 2, \cdots, n.$$

If, however, we have

$$a_{ij}(t) \ge 0, \qquad t \ge 0, \qquad i \ne j,$$

then the result does hold, cf. [2].

Consequently, if we take the Newton approximations

$$\frac{du_{n+1}}{dt} = f(u_n, v_n) + (u_{n+1} - u_n) \frac{\partial f}{\partial u_n} + (v_{n+1} - v_n) \frac{\partial f}{\partial v_n}, u_{n+1}(0) = c_1,
(6) \frac{dv_{n+1}}{dt} = g(u_n, v_n) + (u_{n+1} - u_n) \frac{\partial g}{\partial u_n} + (v_{n+1} - v_n) \frac{\partial g}{\partial v_n}, v_{n+1}(0) = c_2,$$

 $n = 0, 1, 2, \cdots$, with u_0, v_0 prescribed continuous functions, to the system

(7)
$$\frac{du}{dt} = f(u, v), \qquad u(0) = c_1,$$

$$\frac{dv}{dt} = g(u, v), \qquad v(0) = c_2,$$

we can assert that

(8)
$$u_n \le u_{n+1}, v_n \le v_{n+1}, t \ge 0, n = 0, 1, 2, \cdots,$$
 provided that

(9)
$$\frac{\partial f}{\partial v} \ge 0, \qquad \frac{\partial g}{\partial u} \ge 0,$$

for all u and v, and provided that f(u, v) and g(u, v) are strictly convex functions of u and v.

BIBLIOGRAPHY

- 1. R. Bellman, Functional equations in the theory of dynamic programming, V, Positivity and quasi-linearity, Proc. Nat. Acad. Sci. U.S.A. vol. 41 (1955) pp. 743-746.
- 2. R. Bellman, I. Glicksberg, and O. Gross, On some variational problems occurring in the theory of dynamic programming, Rend. Circ. Mat. Palermo vol. III (1954) pp. 1-35.

RAND CORPORATION