
A NOTE CONCERNING COMPLETELY REGULAR GYSPACES1

L. J. HEIDER2

1. Introduction. Let X denote a completely regular topological

Hausdorff space. Let vX and (SX denote respectively the Hewitt

<2-space and the Stone-Cech compactification space associated with

X. For the space X, and similarly for other spaces, let C(X) denote

the set of all real-valued functions defined and continuous on X.

Culminating with the work of Shirota [ll], a prolonged series of

studies [2; 6; 7; 8; 12] has shown that, for arbitrary completely regu-

lar spaces X and Y, an isomorphism of C(X) and C(Y), whether a

ring or lattice or multiplicative semigroup isomorphism [5], deter-

mines a homeomorphism of vX and vY.

The homeomorphism of vX and vY implies, of course, that vX

contains a dense subspace not only homeomorphic to Y, but also such

that every function defined and continuous on this subspace may be

extended continuously over all of dX. Any dense subset of vX with

this extension property will be called an imbedded subspace of vX,

and, with vX homeomorphic to vY, an imbedded subspace of uX

homeomorphic to Y will be called an imbedded image of Y.

Within each space X attention will center at certain points. A Gs

point of a space X is a point p of X such that {p} is the intersection

of a countable number of open sets of X, or, equivalently, such that

C(X) contains a function / with {p} =Z(f), where Z(f) indicates the

zero set of / in X. An isolated point is a Gs point, and every non-

isolated d point p of X is such that C(X — {p}) includes a function

lacking a continuous extension at p. For the sake of brevity, a point

p of X will be called a generalized Gs point if it is either an isolated

point of X or is such that C(X— {p}) contains a function lacking a

continuous extension at p. A completely regular space of which each

point is a generalized Gs point will be called a generalized Gs space.

The main purpose of this paper is to describe the imbedded sub-

spaces of vX. First, by example, note is made of the diversity of

homeomorphic and imbedded images in uX possible for a single given

space Y with C(Y) isomorphic to C(X). Next, the points of uX found

in every imbedded subspace are characterized relative both to uX and
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to an arbitrary imbedded subspace of vX. This characterization is

then used to distinguish a subspace pX of X which, in certain cases,

has a minimal property complementary to the maximal property of

vX. The same characterization is also used to extend and unify the

known conditions [l; 6; 10] under which the homeomorphism of vX

and vY implies the homeomorphism of X and Y. Finally, since the

point characterization used is based on the existence in C(X— {p})

of a function having no continuous extension at the point p, the con-

ditions under which this occurs are analysed in new detail.

2. Point characterization in vX. The work of this section is moti-

vated by observations made in the following examples.

Example 2.1. Let X be the set of all positive, nonintegral, real

numbers under the usual topology. Let Y be the same as X except

that in addition to the integers also the number 1/2 has been deleted.

Then Y is homeomorphic to X and C(Y) is isomorphic to C(X), but

vX, in addition to an imbedded image of Y, contains both a non-

dense homeomorphic image of Y and a dense homeomorphic image

of Y that is not an imbedded image of Y. Noting also that p — 1/2 is a

d point of X, one concludes that an isomorphism of C(X— {p})

with C(X) does not imply that every continuous function on X— {p}

has a continuous extension at p.

Example 2.2. Let Y be the open subinterval (0, 1) of the real

numbers under the usual topology. Form BY in the manner described

in [4; 9] as a topologization of the collection of all dual ideals of open

subsets of Y that are minimal in the collection of all finite, open,

normal coverings of Y. Consider the function defined on Y by the

formula/(y) =y. Let p be any point of BY such that f(p) =0, where/

denotes the continuous extension to all of /3F of the function /.

Finally, let p* denote the point of BY which is the minimal dual ideal

of open subsets of Y of the form U* = {yE Y\ (1 —y)E U}, where

U is any open set in the ideal determining p. Clearly p9^p*.

Now let X =BY — \p}. Then, as is easily surmised and will be con-

firmed in the next example, vX = BY. From symmetry, it is clear that

the homeomorphism mapping the point y of Y onto the point 1 —y

of Y can be extended to a homeomorphism of B Y onto 8 Y which maps

the point p onto the point p*. It now follows that X has at least two

distinct imbedded images in vX, one including p and excluding p*,

and a second including p* and excluding p.

The next example is of a different type, but justifies, in what fol-

lows, a careful distinction between points poiX for which C(X — {p})

contains a bounded function lacking a continuous extension at p, and
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a point p for which C(X — {p}) contains only unbounded functions

lacking such extensions.

Example 2.3. Let Y be a completely regular space for which

fSYy^vY. Let p be a point of (3Y that is not in vY. Let X denote the

subspace F+Jp} of /3F under the relative topology. Then every

bounded function in C(X — {p}) has a continuous extension at p but

at least one unbounded function in C(X — {p}) lacks such an ex-

tension. Moreover, the point p is a Gs point in X. In fact, let po be

any point of a space X such that every bounded continuous function

on X— {po} has a continuous extension at po, but such that some

unbounded function /, continuous on X— {^oj, lacks such an ex-

tension. Under these assumptions, it is easily seen that for every

positive integer N either f(p) > N throughout some deleted neighbor-

hood of po or that f(p) <—N throughout such a neighborhood. As-

sume that for each N, f(p)>N in such a neighborhood. Then with

l(p) = l on X — {po\ and forming g=lV/ in the usual manner, the

function g is strictly positive on X—{pa\. Finally, the function g~l

with g~l(p) — 1/'g(p) tor pT^po, and with g~l(po) =0, is continuous on

all of X and has po as its unique zero point, thus establishing the

above statement.

The diversity of homeomorphic images and of imbedded images

in vX of even a single space Y with C(Y) isomorphic to C(X), as

illustrated above, suggests that the imbedded subspaces of vX are

best investigated on a pointwise basis, with special attention given

to Gs points. This is done in the following theorem.

Theorem 1. (a) The points of vX included in every imbedded sub-

space of vX are exactly the generalized Gs points of vX.

(b) The Gs points of vX are exactly the Gs points of each imbedded

subspace of vX.
(c) The generalized Gs points of vX are exactly the generalized Gs

points of each imbedded subspace of vX.

Proof, (a) Clearly the isolated points of vX are found in every

dense subspace of vX. Secondly, a point p of vX for which there

exists a function defined and continuous on vX— {p\, but lacking a

continuous extension at p, must obviously be included in every im-

bedded subspace. Finally, if the point p of vX is not a generalized G5

point, then the deleted subspace vX — {p } of vX is itself an imbedded

subspace not including the point p.

(b) Let Y denote a subset of uX that is an imbedded subspace of

vX. Then (a) states that every Gs point of vX is a point of the subset

Y, and it is clear that such a point remains a G5 point in the topology

of Y.
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Conversely, let po be a Gs point of the imbedded subspace Y and

let / be a continuous function on Y with Z(f) = {po} ■ Let / denote

the continuous extension of / to uX, and let (Z(f))~ denote the closure

of Z(f) in vX. Then, since it is known [3; 4] that/(p) =0 at a point

p oi vX exactly when p is in (Z(f))~ = {po}, one concludes that po as a

point in vX is a Gs point of vX.

(c) It is clear that every generalized G> point of uX is found in

each imbedded subspace of vX and remains a generalized Gs point

in the relative topology of this subspace.

Conversely, let po be a point in an imbedded subspace Y of vX

that is a generalized Gs point in the topology of Y. If p0 is isolated in

Y, it is clear that as a point of vX it is also isolated in vX. Hence

assume that there is a function, defined and continuous on the deleted

subspace Y — {po}, that does not have a continuous extension at p0.

Consider first the case where this function/ is bounded. It must be

shown that this function has a continuous extension to vX — {po}-

This will be true if for each point p* of vX— Y, regarded as a minimal

dual ideal of open subsets of Y, there exists a number (directed limit)

f(p*) such that for arbitrary positive e there is an open set U in the

dual ideal determining p* such that \J(p*)—f(p)\ <e for each point

p of Y in U [4]. However, since vX is a Hausdorff space, there exist

disjoint open sets U and c7oof Y with po E Uo while U is in the ideal de-

termining p*. Then there exists a function g continuous on Y with

g(£o)=0 while g(p) = l for all pEU. Then fg is defined and con-

tinuous on Y— {po} and, with (f-g) [/>o]=0, becomes continuous on

Y with a continuous extension (f-g)~ to vX. Finally, the value

(f-g)~(p*) of (f-g)~ at p* clearly will serve as the desired value

/(/>*) of the directed limit indicated above.

Now suppose that the point p0 of Y is such that every bounded

function continuous on Y— {pa} has a continuous extension at po,

but that some unbounded function, continuous on Y— {po}, fails

to have a continuous extension at po- Then, as noted in Example 2.3,

the point po is a Gs point of Y and as in uX is a Gi point of vX.

3. Applications. In the studies of the isomorphisms of C(X) and

C(Y) as determining a homeomorphism of vX and vY, frequent at-

tention has been given to the question of when such an isomorphism

determines a homeomorphism of X and Y, these latter spaces, of

course, not being assumed to be (^-spaces [l; 6; 10]. The following

theorem includes and extends the previous results on this question.

Theorem 2. If X and Y are completely regular, generalized Gs

spaces, then a ring, lattice or multiplicative semigroup isomorphism of

C(X) and C( Y) determines a homeomorphism of X and Y.
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This theorem is an obvious consequence of Theorem 1. The fact

that there are completely regular, generalized Gs spaces that are not

ordinary Gs spaces is established by an example.

Example 3.1. Let F be the set of all points within an open circle

of unit radius. With the center point excluded, regard each radius of

this circle as an open subinterval of the real line and ascribe to the

points on such a radius the corresponding topology. For the center

point take as neighborhoods the entire interior of the circle less those

points that lie on a finite number of arbitrarily designated radii at a

distance from the center equalling or exceeding a positive number

likewise arbitrarily designated for each such radius. It is easily veri-

fied that the set Y with this topology is a completely regular space

in which each point, with the exception of the center point, is a G«

point, while the center point is a generalized Gs point but not a Gs

point.

As a second application of Theorem 1, for an arbitrary completely

regular space X let pX denote the collection of all generalized Gj

points of X. Considered as a fixed subset of vX, this subset is the

unique maximal subset of uX included in every imbedded subspace

of vX. This subset, under its relative topology, will be an imbedded

subspace of uX exactly when as a subspace of X it is dense in X and

is such that every function continuous on this subspace has a con-

tinuous extension over all of X. When pX is an imbedded subspace

of vX, it has a minimal property complementary to the maximal

property of vX. This is understood in the sense that not only are

C(pX), C(X) and C(vX) isomorphic, but also that for any completely

regular space Y the isomorphism of C( Y) and C(X) implies the in-

clusion relation pXCYCvX for every imbedded image Y of Y in

vX.
For any generalized Gs space X, one has ;uX=X, so that in this

case pX has an imbedded image in vX and enjoys the described

minimal property. However, for the space X=$Y— {p} described in

Example 2.2 it is easily verified that pX has no imbedded image in

vX. In fact, in this example pX coincides with the initial space Y, and

the space Y, as allowing unbounded continuous functions, cannot

have an imbedded image in the space /3 F— {p}, since the latter space

allows only bounded continuous functions.3

4. Generalized Gs points. The generalized Gs points of a space X

were defined in terms of the function space C(X). In the following

3 The existence of such nonimbedded pX was first noted by M. Henriksen.
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theorem, brief and incomplete note is made of characteristics of such

points which distinguish them in terms of the topology of X.

Theorem 3. (a) A generalized Gs point p of a space X such that

every bounded continuous function on X — {p} has a continuous exten-

sion at p, but such that some unbounded continuous function on X — {p}

lacks such an extension is, in fact, a Gs point of X.

(b) A nonisolated point p of X has the property that every bounded

continuous function on X — {p} has a continuous extension at p if and

only if every finite, open, normal covering of X — {p} is obtained by

deleting the point p from the sets in a finite, open, normal covering of X.

Part (a) of Theorem 3 was established in Example 2.3. Here it is

merely noted that, while a Gs point p of the type described in (a)

has the special properties that the first axiom of countability always

fails at p and any continuous function / on X with Z(f)= {p} has

one-signed functional values in some neighborhood of p, nonetheless,

examples may be constructed showing that neither of these properties

characterize such Gs points. What such a characterization would be

is left here as an open question.

Part (b) of Theorem 3 is understood with relative ease when the

space 8X is regarded as a topologization of the set of all dual ideals

of open sets of X that are minimal under the collection of all finite,

open, normal coverings of X [4; 9]. Here it is merely noted that (b) is

not equivalent to the statement: /3(X— {p})=8X. Thus in Example

2.1 with p = l/2, there are many bounded continuous functions on

X—{p} lacking a continuous extension at p, while /3(X— {p}) is

clearly homeomorphic to /3X.
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