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1. In this note we shall derive some criteria for the boundedness

of solutions of nonlinear differential equations by means of a simple

lemma given below. We shall also consider when a solution of a differ-

ential equation is unbounded.

We shall say that the function h(x, r) possesses the property I if

h(x, r)^0 for the specified range of values of x and r, if it is measur-

able in x for fixed r^O, continuous in r for fixed x, x0^x< oo, r^O,

and if r(x) is the maximal solution of the differential equation

r' = h(x, r) passing through the point (x0, 0).

Let us begin by proving the following lemma:

Lemma. Suppose that h(x, r) has property I. Let y(x) be continuous

on xo^x<» and satisfy the inequality |Av(x)| -^fxx+Axh(t, y(t))dt,

Ax ^ 0, then y(x) g r(x) for xo ^ x < oo.

Proof. The inequality shows that y(x) is absolutely continuous in

the interval (x0, oo), which implies that the derivative y'(x) exists

almost everywhere in [xo, °°). Furthermore, it is clear from the as-

sumed inequality that the derivative satisfies the relation

(1) | /(*) |   g h(x, y(x)),

almost everywhere.

Suppose that b(x, t) is a solution of r'= h(x, r)+t, r(x0)=0

where e is an arbitrarily small quantity. It is easy to show that

(2) y(x) Si b(x, t), x0 ^ x < oo.

For suppose that this relation does not hold. Then, without loss of

generality, let [x0, xi] be an interval where y(x)^b(x, t). At x0, we

have y(x0)=b(x0, t). Hence taking right-hand derivatives at x0, we

obtain the inequality

(3) /(*<,) ^ b'(xo, t).

From this we obtain the further inequality

(4) h(x0, y(x0)) ^ h(xo, b(xo, t)) + t,

which leads to a contradiction. Hence (2) holds.
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Since we know that lim«^o b(x, e)=r(x), see [l], the lemma is

proved.

Note. The notion of the maximal solution, and the above argument

as used throughout this note, follow Kamke [l]. The lemma is a

generalization of Bellman's lemma, cf. [2].

2. Letyand/(x,y) be vectors with real components, (yi,y2, ■ • • ,yn)

and (/i(x, y),fi(x, y), • • • ,fn(x, y)) respectively. Define the norm of

the vector y as follows: ||y|| = XX11^*1 • Consider the system

(1) y'=f(x,y),      y(xo) = 0,

where/(x, y) is continuous on x0^x< =o, ||y|| < co.

Then we have

Theorem 1. Suppose that h(x, r) has property I and that

(2) \\f(x, y)\\<L h(x, \\y\\).

Then if r(x) = 0(1) as x—>», the norm of every solution of (1) tends to a

finite limit as x—>°o. //, in particular, r(x) =o(l) then each component

of every solution of (1) tends to zero as x—> <x>.

Proof. Let a solution of (1) be y(x) =fSf(t, y(t))dt, and let Ay(x)

= y(x+Ax)—y(x), for Ax>0. It follows that

(3) ||Ay(*)|| g  r   X\\f(t,y(t))\\dl
J X

and hence that

(4) ||a.,(*)|| =g  fX"Ah(t, \\y(t)\\)dt.
JX

Using the lemma derived above, we obtain

(5) \\y(x)\\ ^ r(x), 0 g x < «>.

This together with the assumptions of the theorem yield the stated

results, which generalize a result due to Wintner, [4].

The first part of the theorem is contained in [5 ] for the case where

h(x, r) is monotone nondecreasing in r. Here, we have merely assumed

that h(x, r) is continuous.

Theorem 2. Suppose that h(x, r) has the property I. Let the differ-

ential system in (1) satisfy the further condition that

(6) \\f(x, y) - f(x, z)\\ g h(x, \\y - z\\).

Suppose that r(x) =0(1) as x—>». Then if one solution of (1) tends to
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a finite limit as x—>oo, then every solution vector tends to a finite limit.

If, in particular, r(x)=o(l) as x—>oo, then every solution tends to the

same finite limit as x—> oo .

Proof. Let y and z be any two solutions of (1). Writing v = y — z

and proceeding as in the proof of the previous theorem, we obtain

(7) ||A^l g   P    *||/(<,y)-/(/,*)||«ft
"   X

and, as a consequence,

/■ x+{Sx
h(t,\\v\\)dt, Ax > 0.

X

Applying the lemma proved above, this yields

(9) \\v\\ = ||y — z|| ^ r(x), x0 ^ x < oo.

This together with the hypothesis of the theorem furnishes the desired

result, which constitutes a generalization of a result of Wintner, [3].

When « = 1, the first part of the theorem is contained in [5].

Corollary. // in the above theorem we suppose that f(x, 0) =0, then

every solution tends to a finite limit as x—> °o .

Let us now consider when a solution of the differential equation

can be unbounded as x—> oo. We treat only the case n = l.

Theorem 3. Let h(x, r)>0 be continuous on x0<x< oo, r>0 and

h(x, 0) =0. Suppose that the following condition is satisfied:

(10) | /(*, yt) - f(x, yi) |   ^ h(x, \ y, - yi |).

Then, if any one solution of r' = h(x, r) passing through (xo, 0) is un-

bounded as x—» oo, then at least one solution of (I) is unbounded.

Proof. Let yi and yi be any two solutions of (1). Put z=y%—yi.

Consider the equation

2' = yi - yi = fix, yt) - fix, yi)

= f(x, z + yi) - f(x, yi) = F(x, z).

Using the assumption made above, we have \F(x, z)\ ^h(x, \z\).

Since F(x, z) is continuous and h(x, r)>0, the above inequality shows

that, for ordinates different from zero, F(x, z) ^0; which implies that

either F(x, z)^h(x, \ z\) or F(x, z) ^ — h(x, \z\). Let us consider the

first case.

It may be shown by means of an argument similar to that given
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in the proof of the Lemma that z(x, e)^k(x) for x0^x< «, where

k(x) is the given unbounded solution and z(x, e)  is a solution of

z' = F(x, z)+e passing through (x0, 0).

It follows that

(12) 2(x) = lim 2(x, t) §: k(x), xo ^ x < =o,
«->o

and that 2(x) is a solution of z' = F(x, z) passing through (x0, 0). It

follows that z(x) is the required unbounded solution. The proof of the

other case is similar.

3. In this section, we shall compare the solutions of two different

systems. Let z and g(x, z) be vectors with real components

(zi, 22, • • • , 2n), (gi(x, 2), g2(x, 2), • • • , gn(x, 2)), and let the norm be

defined as above. Consider the system

(1) 2' = g(x, 2), 2(X0)   = 0,

where g(x, z) is continuous on xo^x< 00, [ ̂  j <co.

Theorem 4. Suppose that h(x, r) has property I. Let the functions

f(x, y) and g(x, z) satisfy the condition

(2) \\f(x, y) - g(x,z)\\ ^ h(x,\\y-z\\),

and suppose that r(x)=0(l) as x—><*>.

Then, if one solution of (3.1) tends to a finite limit as x—»=°, then

every solution of (2.1) tends to a finite limit as x—> oo , and conversely. If,

in particular, r(x)=o(l) as x—>=c, then every solution of (2.1) and

(3.1) tends to the same finite limit as x—>=o.

Proof. Suppose that y is a solution of (2.1) and that 2 is a solution

of (3.1). Set v = y—z. Proceeding as above, it follows that

/• x+Ax
h(t, \\v\\)dl, Ax > 0.

X

Our lemma yields

(4) ||v|| ^ r(x), XoSx < oo.

From this and our hypotheses, the desired conclusion follows.

Corollary. If g(x, 0) = 0 and r(x) = 0(1) as x—* oo, then every solu-

tion of (2.1) tends to a finite limit as x—>oo.

Note. A comparison theorem of this type is given in [5] for the case

where w = 1 and h(x, r) is monotonically nondecreasing in r.



1048 v. lakshmikanth

Let us now consider another result concerning the unboundedness

of a solution of a differential equation.

Theorem  5. Let h(x,  r)>0  be continuous for x0^x<oo,  r>0,

h(x, 0) =0, and suppose that

(5) | fix, y) - g(x, z) |   ^ h(x,  | y - z \ ).

Let g(x, 0) =0. Then the unboundedness of any one solution of r' = h(x, r)

through (x0, 0), apart from the minimal solution, guarantees the un-

boundedness of the maximal solution of (2.1) as x—> oo.

Proof. Since g(x, 0) =0, we have by virtue of (5),

(6) \f(*,y)\   ^ h(x, \y\).

By the argument similar to that of Theorem 3, this implies either

fix, y)^h(x, \y\) or f(x, y)^—h(x, \y\). Let us consider the first

case. Proceeding as above, we obtain the inequality

(7) y(x, e) ^ k(x), xo ^ x < co,

where k(x) is the unbounded solution of r' =h(x, r) and y(x, t) is any

solution of y' =f(x, y)+e passing through (xo, 0). Since it is known

that lim(,o y(x, t)=z(x), the maximal solution of z'=f(x, z) passing

through (x0, 0), the conclusion follows from (7).

Corollary. If the minimal solution of r' — h(x, r) is unbounded, then

every solution of (2.1) is unbounded as x—>°°.
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