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Introduction. M. Augustin-Louis Cauchy in his famous Cours

d'Analyse de I'ecole Royale Polytechnique (Part I, Analyse Algebrique,

Chapter 5, page 109), published in 1821, gives a beautiful proof that

the only continuous solution of the functional equation f(x)+f(y)

=f(xy), where/(x*) is defined for all real numbers x, is the function

f(x)=a\n x. Cauchy's proof reduces the equation to the Cauchy

equation f(x)+f(y) =f(x+y). In 1905 G. Hamel in the Mathe-
matische Annalen proved that the discontinuous solutions of Cauchy's

equation are totally discontinuous. In 1919 in the Transactions of the

American Mathematical Society B. Blumberg proved that the only

measurable function satisfying Cauchy's equation is the function Ax,

hence the only measurable solution of f(x) +/(v) =f(xy) is a In x. In

the past thirty-five years there have been a number of papers on

these functional equations where the domain of the independent vari-

able has usually been the real number system. In 1946 P. Erdos

proved by analytic number theory techniques that if f(m) is additive

and/(w + l)^/(w) then f(m) = c In m (Ann. of Math. vol. 47 (1946)).

This implies "If f(m + l) >f(m) and f(m) +f(n) =f(mn) hold for all
positive integers m and n, then f(m) =c In m," a result for which the

author obtained a more elementary proof in 1950 (Proc. Amer. Math.

Soc. vol. 1, no. 4). In a problem of designing a computating mecha-

nism the author considered the monotone solutions of f(x)+f(y)

=f(xy) where the domain of the independent variable is the finite set

of integers 1, 2, • • ■ , n. This led him to the notion of logarithmic

sequences, the subject of this paper.

Definition. Logarithmic Sequence. A logarithmic sequence is a

set of n real numbers a,-, * = 1, 2, • • • , « such that

(1) 0 S en ̂  1,

(2) ak + ai < ar + a„ if kl < rs,

(3) ak + ai = ar + as if kl = rs,

n is called the order of the logarithmic sequence.

Notation. pi\ For r^n and s^n form all the different products

rs. The sequence pi, pi, pz, ■ • • ,pt is the sequence of all these distinct

products arranged in increasing order of magnitude.

Si'. Corresponding to the logarithmic sequence «y, J = l, 1, • • ■ , n

and pi — rs, * = 1, 2, • • • , t we define Si = aT+a,.
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The ii are monotonically increasing.

A,: A,- = si+i — Si > 0 for i = 1, 2, ■••,/— 1.

MinA(a) denotes the smallest A,- for a given logarithmic sequence

a{.

Definition. Maximizing Sequence. m\, ntt, ■ ■ • , m„ is a maximiz-

ing sequence if it is a logarithmic sequence and min A(m) |=min A(a)

for all logarithmic sequences ai, a2, • • • , an.

Properties of logarithmic sequences of order n.

1. ai<a2<a3 ■ • • <o„ for pt = i when i—1, 2, • ■ ■ , n and s(

= ai+aj by definition ai+ai<ai-f-a2< • • • <ai+a„.

2. minA(a)g:(2-Si)/(t-l) for st>st for *=1, 2, • • • , *-l,

■f( = a„ + a„ ^ 1 + 1 = 2,

•W > ii = ai + «i i£ 0 for i > 1,

2 ^ j, = *, + A, + A2 + • • • + At-i,

2 - Jx S; Ax + A2 + • • • + At-i.

3. minA(a)g(s„-s3)/(£ —#).

4. If ax, at, • • • , ak, • • • , an is a logarithmic sequence of order ra

then ci, a2, • • • , a* is a logarithmic sequence of order &.

5. Ai>A2>A3> • • • >A„_i.

Proof. For k<n there is an r such that 2at = sr and

Ojt+i + a^_i = sr_i,

2a,t > a*+i + aic-i,

Afc_i > Aft.

6. If pipk = prpi = some p, then ss —5y = 5r —5* =Ay+AJ+i . . .

+A,-_i.
7. If w is a prime /(«) = /(w — l)+w.

8. A(_i=A,_2=An_i for s, = 2an, St_i=a„+<z„_i and s4_2 = 2a„_i.

9. In the system of linear inequalities A;>0 fori =1,2, • • • , t — 1,

the inequalities * = 1, 2, ■ • • , n — 1 are superfluous.

Proof. If i<» let pk = 2i and />j = 2(i+l) then Sk = a2-\-ai and

s; = «2 + a»+i, *J — Sk = Qi+i — at = Ai = Ak + Ak+i + • • • + Aj_i.

Hence if

n/2 = i < n, A,- = A^ + A4+i + • • • + Aj_1; k ^ w

if

»/4 g * < f»/2, A; = Ak + At+i + • • • + A,_i, * ^ »/2
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if

n/2" ^ i < n/2"-\     A; = A* + A^+i + • • • + Aw,     k ^ w/2""1.

10. Let the logarithmic sequence <ii, at, ■ • ■ , an be represented by

the position vector a = (ai, ■ • • , an) in w-dimensional Euclidean

space. If a and b represent logarithmic sequences then ka

= (kai, kat, • • • , kan) for 0<&<1 and (ma-\-nb)/(m-\-n) for all m>0

and «>0 represent logarithmic sequences. The set of points L repre-

senting logarithmic sequences is convex, connected and dense in it-

self.

11. If pi, pt, pi, • • • , pk are all the primes less than or equal to n,

then ai, apv apv • ■ ■ , apk determine the logarithmic sequence

Oil &2i 0.3, ■ • ■ , an.

12. If

at Ai

03 A2
a =    •    , A =      •      , ai = 0

a„ An_i

and

10    0-     •     •    0

1    1    0    •     •     •    0

111-0

A m

1     1     1        - -     10

1     1     1     • • ■     1     1

then in matrix notation a =AA and A=A~la.

13. If pi, pt, ■ ■ ■ , pk are the primesg«, ai = 0 and Si = riiaj,1

+raaPj+ ■ ■ ■ +rktaPk for t = l, 2, • • • , t — 1 then the rank of the

matrix

rn   rti ■ ■ ■ rki

rit   rtt • • ■ rkt

R =

rut-u    • ■ ■   rk{t-i)
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is k and

Ai aPl

A 2 ap,
A =     •        = A^R .*

Aj_i apt

where A~lR has rank k.

Properties of maximizing sequences mu m2, • • • , m,.

1. Wi = 0 and m„ = l.

Proof. Assume mn<\ and let X = l/w„>l.

The sequence Aw is a logarithmic sequence.

Si(\m) = \si(m),

Ai(\m) = XAi(w)     for i = 1, 2, •••,/— 1,

min A(Xto) = X min A(m) > min A(m)

contrary to the assumption that m was a maximizing sequence. Hence

w„=l.

0 ^ w; — mi ^ 1,

(mt — wi) + (w; — mi) < (mr — nti) + (m8 — mi) when H < rs,

(mk — m{) + («i — »i) = (mr — mi) + (ws — mi) when £/ = rs.

Therefore nti — mi is a logarithmic sequence.

Si(m — mi) = Si(m) — 2mi,

ASi(m — mi) = Asi(m),

min A(m — nti) = min A(m) or m — «i

is a maximizing sequence and mn — mi=l=mn. Hence Wi = 0.

2. Ai=A2+A3 for Ai = 52 and Si = ls2.

3. E'r1Af = 2, £r1Ai=l and hence X^A^l.
4. minA(jw) of a maximizing sequence of order wrSmin A(m) of a

maximizing sequence of order k if n>k. This is a consequence of

property 4 of logarithmic sequences.

5. If ai, fflj, • • • , a„ and fti, 62, • ■ • , bn are maximizing sequences

and A*(a) =min A(a), then A*(a) = At(6) for at least one k for which

Ak(a) =min A(a).

PROOF.Ai(a+b)/l = (Ai(a)+Ai(b))/l>Ak(a) for all i except those

for which At(a) =At(b) =Ak(a). The inequality cannot hold for all i

since a is a maximizing sequence. Hence there must be a k such that

A*(a) = Ak(b) = min A(a) = min A(b).
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Theorem I. A maximizing sequence of order n exists for every natural

number n.

Proof. Let L be the set of points a = (ai, a2, ■ • • , an) in n dimen-

sional Euclidean space for which a is a logarithmic sequence. The set

L is bounded since it lies inside the rectangle 0 = x,g 1. Let L be the

closure of L. If x=(xi, Xt, ■ ■ ■ , x„) is in L then Si(x) =xT + xs (when

pi = rs) is a continuous function of x in L for *=1, 2, ■ ■ • , t. At(x)

= Si+i(x)—st(x) is a continuous function of x in L for i=\, 2, • • • ,

/ — 1. Let min A(x) be the minimum of A,(x) for fixed x and variable i.

Min A(x) is a continuous function of x on L, a closed bounded set.

Hence there is a point m in L at which min A(x) is a maximum. We

will show that m is in L and hence is a maximizing sequence.

m is a limit point of logarithmic sequences. There exists a sequence

of points, belonging to L, /'=(/,, 4i * • • i 0 with m as a limit.

0 g /I < l\ < ■ ■ • < C^ 1     for * = 1, 2, 3, • • •,

0 g nil ^ ntt ^ - * * ^ ffl* ^ 1.

Suppose mr = mr+i then sr(m)=mr-\-mi and sr+i(m) = OTr+i+mi.

Ar(m)=0 and hence minA(w)^0 contrary to m being a maximum

point for min A(m) since log„ i, i=\, 2, • • • , « is a logarithmic se-

quence with min A>0. Therefore

0 -^ nil < nit < mz < ■ • • < mn.

ll + l]< ll + ll if kl < rs.

Hence mk+mi^mr+ms if kKrs or Si(m) ^St(m) §s3(m) ^ • ■ •

^st(m). Suppose Sj(m) = si+1(m) then A,(w)=0 and minA(w)^0

which is impossible. Therefore mk+mi<mr-\-ms if kl<rs. Finally

4+/] = /'+^ if kl = rs implies mk+mi = mr-\-ma if kl = rs and hence m

is a logarithmic sequence and therefore a maximizing sequence.

Lemma. A maximum minimum point of a finite set of hyperplanes

can be determined in a finite number of operations, if the set of hyper-

planes has a maximum minimum point. Furthermore the maximum

minimum point lies in a level intersection of a subset of the hyperplanes.

Proof. Let L{= ^jLi a{xj + Ci, i= 1, 2, • • • , n be n linear func-

tions of the p variables xi, x2, • • • , xp or the point X=(xi, x2, • ■ ■ ,xp)

in ^-dimensional Euclidean space. Min Lt(X) denotes the function

of X whose value is the smallest number of the set Li(X), Lt(X), ■ • •,

Ln(X). We wish to determine a point X for which Min Li(X) is a

maximum. Geometrically this is the problem of having given n opaque

hyperplanes L = Li(X) in p + 1 dimensional  space and considering
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the L axis as the up and down axis, to find the highest point an ob-

server below all these hyperplanes can see i.e. the highest point in

the closed convex region bounded by L = Min Z,;(A'). To find this

point we will start at an arbitrary point of Min L,(X) and determine

a path, consisting of a finite number of line segments which are al-

ways going up and lead us to our destination.1

Select any point X1 = (x\, x\, • ■ ■ , xp) in p dimensional Euclidean

space. Let our linear forms be labelled so that L^X1) = Min L^X1).

Any ray / starting at X1 may be expressed in the normal form:

Xj = Xj+bjS with ^2ltf = l, 5^0. Along / we have Li(X)= J*'* a{x\
■\-a{bjS-\-Ci and dLi/ds= 2~Ii a{bj. By the Cauchy-Schwarz inequality

dLi/ds is a maximum when bj = a(/(2~^(a\)2)112. Let h denote the ray

xj = x)+a{s/("£l(a\)2)112. If a{ = 0 for j=l, 1, • ■ ■ , p, i.e. Li = Ci then

X1 is a maximum point (there may be a p — 1 dimensional manifold

of such points). If a{^0 for some j and the ray k does not contain

any points for which Li(X)=Li(X), tVl, then L((X)>Li(X) at all

points on h and there is no point for which Min L,(X) is a maximum.

If the ray h does have points for which Li(X) =Lt(X), tVl, let X2

be the point on h corresponding to the smallest value of s for which

this condition is satisfied. Denote by L2(X) the (or one of the linear

functions) L((X) for which LX(X2) = L2(X2) ^Lf(X2) for i>l. X2 lies

in the p — 1 dimensional manifold 7Ti, on which Li(X) = L2(X), deter-

mined by the equations

Xi = Si i = 1, 2, • • • , p — 1,

xP = ( 2~1 (fli — a^)si + ci — c% )/(a2 — ai).

In this manifold

P  ^>      1 P \-v      1 , P P
o2 2^ aisj ~ Qi 2^ a^si   i ci°2 — c2ai

Li  = L2 =- •
a-t — a{

Any ray / in 7Ti starting at X2 may be written in the normal form:

Sj = xJ+bjs, X>? = 1, st0,j = l, 1, ■ ■ ■ , p-l. Along/,

dLi       *zj a2ai — aio2
- = 2^ Cjbj where Cj =-.
ds i a\ — a\

By the Cauchy-Schwarz inequality dLi/ds is a maximum for bj

-cy/d/?)"1- We denote by h the ray s,=*?+c;s/(X/?)1/2. If C/-0

1 Suggested by Professor J. F. Paydon, U. S. Naval Academy.
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for j = 1, 2, • • • , p — 1 or 7Ti is the level intersection of L = Li(X) and

L=Lt(X), we investigate the question; "Is there any ray starting at

X2, along which Z-i and all other Li for which Li(X2) = Li(X2),

labelled as L2, L3, ■ ■ ■ , Lk are increasing functions?" If the answer

is in the negative X2 is a point for which min Li(X) is a maximum.

Let Xi = x2i-\-bit be any ray emanating from X2 then along this ray

dL(/dt= 2^*= i a[bj, t = l, 2, ■ ■ ■ , k. A question equivalent to the

above is, "Are the inequalities

p

(1) 22 ai°i > 0, t = 1, 2, • • ■   & consistent?"
j=i

The consistency of such a set of inequalities may be determined by

applying the existence theorems of Dines or Carver (L. L. Dines,

Linear inequalities, Bull. Amer. Math. Soc. (1930) p. 393). If the

system (1) is consistent a set of bi satisfying (1) may be found by the

method of Dines (L. L. Dines, Systems of linear inequalities, Ann. of

Math. vol. 20 (1919) pp. 191-198). Using the b{ that satisfy (1) we
can find a point P^X2 on the ray xi = x2i-\-bit such that Lt(P) ^Lj(P)

fort = 1,2, • ■ • , k and j>k. Min L{(P)> Min Z,*(X2). We now repeat

the above procedure starting at P as we did starting at X1.

If Cjy^O for some j, then there is a gradient ray k. If there is no

point Xs on h for which Lt(X3) =L2(X*) =L{(X3) for some i>2 then

there is no maximum value of Min Li(X). If there is such an X3 let

it be the one corresponding to the smallest value of s on It. We call

L3(X) the (or a) linear function for which Li(X*) =L2(X*) = L3(X3)

= L;(X3) for i>3. Proceed as above in the manifold tt2 in which

Li(X) =Lt(X) = L3(X) and determine l3, etc.

Continuing in this way if XT exists, the manifold 7rr_i in which

Li(X)=L2(X)= ■ • ■ =Lr(X) (assuming these r — \ equations are

independent, if not we take a smaller r) is determined by Xi = st,

i = l, 2, 3, • • • , p — r + 1 and the x,, j = p — r + 2, p — r + 3, ■ ■ ■ , p

obtained by substituting Xi = Si, *=1, 2, ■ ■ • , p — r + 1 in the r — \

equations Li(X) =Lt(X) = • ■ • =Lr(X) and solving for x,. Any ray

in irr_i emanating from XT has the form

(2) Sj = x'j + bjs = 1, 2, ■ ■ ■ p- r + 1, s ^ 0, £ b) = 1.

Let

p—r+t p—r+3 v
<Ji ai ■ ■ • ai    1

p—r+i p—r+3 P

at at • • • at    1 ^->
D =.= £ A,

. i
'p—r+2       ' p—r+3 "p       '

ar <lr °r      1
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where A{ is the cofactor of the ith element in the last column of D.

Along the ray (2).

dLi    rgl '    A\<n
—- = 2^ CA where cy = l_ —— >
ds i i=i,    £>

-is a maximum for <V, = cy/( 2J cj)

for j = l,  2, ■ • • , p — r + 1. We denote by J, the ray

Sy =  Xy + C/j/f   Z) Cyj

and proceed as we did for l2 above.

Since only a finite number of linear functions Li are given, there

exist a finite number of level intersections of a subset of the Hyper-

planes L = Li. Hence if Max Li(X) exists, its maximum points will

lie in a level intersection which will be reached in a finite number of

operations as indicated above.

Corollary. If the inequalities (1) are replaced by

(V) £ Ui ^0 i = 1, 2, • • • , k
3-1

and there exist no solutions (bi, b2, ■ • ■ , bp) of (l1) other than the trivial

solution bj = 0, then X2 or more generally Xr is the only point which

makes min Li(X) a maximum. For this implies that there is no direction

we can go from Xr without some Li(X) decreasing for * = 1, 2, 3, • ■ • ,

r-l.

The following theorem due to Carver is useful in showing that (l1)

has no nontrivial solutions: "A necessary and sufficient condition that

the system 2J"-i a{xj^0, i=\, 2, ■ ■ ■ , m admit a solution

(xi, x2, ■ ■ ■ , xn) which does not annul all the left members is that

the adjoint system of linear equations 2~L?=i a«y> = 0, j = l, 2, • ■ • , «

admit no solution (yx, y2, ■ ■ ■ , ym) with all the y«>0. (Dines, Convex

extensions and linear inequalities, Bull. Amer. Math. Soc. vol. 42

(1936) p. 353).

Theorem II. A maximizing sequence of order n can be obtained in a

finite number of operations.

Proof. Express pi, * = 1, 2, • • • , t as a product of the k primes

■Ki, ■ ■ ■ , 7T*. If />» = 7Ti7T2 • • • TTk then s{ = rari+5ar!+ • • • +Xairj|,.

Choosing ai = 0 we can determine Ai = d\aTl+d\ax,+ ■ ■ ■ +d*a*k.

By setting the expression for an in terms of a,,, • • • , a»t equal to one,
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we can eliminate one of the aTi from the A, and obtain A; as a linear

combination of k — 1 of the aTi. Consider the system of linear inequal-

ities At>0 in terms of the k — l variables a,t. By Theorem I and the

Lemma we can determine a solution of this set of (t — 1) inequalities

for which min A,- is a maximum.

Corollary. For every n there exists a maximizing sequence of order

n all of whose elements are rational numbers.

Maximizing sequences of order 2, 3, 4, 5, 6, and 7.

n = 2, / = 3, mi = 0 and nit = 1 by property 1,    Min A = 1.

n = 3, t = 6, mi = 0, w2 = 2/3 and m3 = 1,        Min A = 1/3.

Proof, mi = 0, m3 = \, t = 6. Let m2 = x then

5i = 0 Ai = x

si = x At = 1 — x

53 = 1 A3 = 2x - 1

54 = 2x A4 = 1 — X

St, = x + I A6 = 1 — x

56 = 2

A3=A4 for x = 2/3. If x>2/3, A4<l/3. If x<2/3, A3<l/3. Therefore

x = 2/3 yields the only maximizing sequence for w = 3.

11 = 4, t = 9, nil = 0, nit = 1/2, m3 = 5/6, mt = 1;    min A = 1/6.

Proof. wi = 0, mt = l = 2w2. Let m3=y

si = 0 A, = 1/2

52 =1/2 A2 = >> - 1/2

53 = y A3 = 1 - y

54 = 1 A« = y - 1/2

56 = y 4- 1/2 A6 = 1 - y

56 = 3/2 A6 = 2y - 3/2

57 = 2y A7 = 1 — y

sa = y + 1 A8 = 1 — y

59 = 2

A5=A6 when y = 5/6 yields the unique maximizing sequence for if

y>5/6, A7<l/6 and if y<5/6, A„<l/6.
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» = 5, t = 14, min A = 1/16.

nil = 0, nit = 7/16, t»3 = 11/16, »4 = 7/8, «j = 1.

Proof. wi = 0, mt, = \, let m2 = x, W4 = 2x, ra3=y.

5i = 0 Aj = x = A2 + A3

52 = x At = y — x = A9 + Ai; y > x

53 = y A3 = 2x — y = A4 + Au, y < 2*

54 = 2x A4 = 1 — 2* = A7 + A8, x < 1/2

55 = 1 A6 = x + y - 1, y > 1/2

56 = x + y Ae = 2x — y = A3

57 = 3* A7 = 2y — 3x

58 = 2y A8 = x — 2y + 1

59=l + x A9 = x + y — 1

5io = 2x + y        A10 = 1 — 2x = A7 + A8

5u = 1 + y An = 4x — y — 1, x > 3/8

512 = 4x A12 = 1 — 2x = A7 + A8

Sn = 1 + 2x        A13 = 1 - 2x = A7 + As

514  =   2

Let Z,i = x+y— 1, Lt = x — 2y + l, L3 = 4x—y —1 and Z,4 = 2y —3x.

Lt = L3 = Lt when x = 7/16, y= 11/16. Applying the corollary to

Lemma we consider

(l1) X! - 2x2 ^ 0,    4*i - *2 ^ 0,    -3*i + 2*2 S: 0.

1  -2

4 -1

-3    2

has rank 2.

The equations yi+4y2 —3y3 = 0 and — 2yt — y2 + 2y3 = 0 are equiva-

lent to y2 = 4/7y3 and yi = 5/7y3 which obviously has a definite solu-

tion. Hence by Carver's theorem (l1) has no nontrivial solution and

x = 7/16, y = 11/16 determine the unique maximizing sequence.

Similarly we can show that for

« = 6, t = 18, min A = 1/23.

mi = 0, nit = 9/23, m% = 14/23, w« = 18/23, m6 = 21/23, ms = 1.

And for
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» = 7, I — 25, min A = 1/42.

mi = 0, m2 = 5/14, m-i = 4/7, m* = 5/7, m^ = 5/6, w6 = 13/14, w7 = 1.

These examples suggest the conjectures: For every n there is a unique

maximizing sequence. The min A of a maximizing sequence is the

reciprocal of an integer.

United States Naval Academy and

The Johns Hopkins University


