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The definitions and notation are those of (2). We shall prove the

following theorem.

Theorem. If 3 contains an ideal which is not principal then there

exists a quadratic extension %' over % which has no integral basis over g.

The theorem was proved in (2) for the case that % has character-

istic different from 2. Here we shall give the proof in the case that §

has characteristic 2.

Let g have characteristic 2 and let ft'= 8(0) where 62+bd+c = 0;

b, c£3. b9*0. Every aQ%' may be written as yo+yi0; yo, yiGty- If

a is integral then E(a) = &yi and E(a0) +yi62 = by0 are integers. Hence

we may write

X0 + Xl8
a =-; xo, xi Q 3.

o

The integers Xi appearing in these representations form an ideal a of

J.

Lemma 1. We have a = b, where b is the different of g' over %.

Proof. The ideal a is the g.c.d. of all traces of elements in J'. Hence

b = 0 (mod a). On the other hand a is also the g.c.d. of all differents

of elements of 3' since $ has characteristic 2. Hence a = 0 (mod d)

and so u = b. (The proof of Lemma 11.5.1 of (1) carries over without

change to any Dedekind ring.)

Lemma 2. Let g have characteristic 2 and let q be any squarefree ideal

of 3. There exists a quadratic extension g' over g whose different over

% is q.

Proof. We determine q' so that (q', q) = 1 and q'q = (6), &G3 and

q" so that (6, q") = l and q"q = (c), cQ$ and c = b + l (mod q'2). The

polynomial x2-\-bx-\-c is irreducible by Eisenstein's criterion. If 0 is

one of its roots then a=(y+0x)/6, x,y£3 is integral if and only if

A(a) is integral, hence if and only if

(1) x2c + bxy + y2 = 0 (mod b2).

By Lemma 1 b is the g.c.d. of all x for which (1) has a solution yQQ.
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We then have y = 0 (mod q), hence x = 0 (mod q). On the other hand

for x=y = 0 (mod q) we have by our construction of b and c

x2(c -\-b-\-i) =Q (mod q2),

x2(c + b + 1) = 0 (mod q'2),

whence x2(c-\-b-\-i)=0(b2) and therefore b = q.

Our theorem now follows easily from Lemma 2 and Theorem 5 of

(2).
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