DUAL TRANSITIVITY IN FINITE PROJECTIVE PLANES

T. G. OSTROM

Introduction. Let π be a finite projective plane of order n,—i.e., with n+1 points per line. The author [2] has shown that if π is doubly transitive and n is an odd nonsquare, then π is Desarguesian. M. Hall and D. Hughes, in a paper to appear soon, have removed the restriction that n must be odd. In this paper, we show that if π is dually transitive (see definition below), then it is doubly transitive.

1. Dual transitivity.

DEFINITION. Let p and p_1 be any two points, and let L and L_1 be any two lines such that p is not on L and p_1 is not on L_1 . If (for all choices of p, p_1 , L, L_1) there is a collineation of π which carries p into p_1 and L into L_1 , then π will be said to be *dually transitive*.

THEOREM 1. Let p and p_2 be any two points, and let L and L_2 be any two lines such that p is not on L and p_2 is not on L_2 . If (for all choices of p, p_2 , L, L_2) there is a correlation of π which carries p into L and p_2 into L_2 then π is dually transitive.

Proof. Consider the collineations which arise by taking the products of two correlations.

LEMMA 1. Suppose that the projective plane π of order n admits a group Σ of collineations which (1) leaves a certain line L fixed and (2) is transitive on points not belonging to L, then if L_1 and L_2 are two lines $\neq L$ whose point of intersection lies on L, there is a collineation of Σ which carries L_1 into L_2 .

PROOF. Let us refer to points not on L as ordinary points. Let $\mathfrak C$ denote a transitive class of lines under Σ —i.e., each line of $\mathfrak C$ can be carried into each other line of $\mathfrak C$ by a collineation of Σ and no line not in $\mathfrak C$ is the image of any line in $\mathfrak C$. Now let p be an ordinary point which is on exactly k lines of $\mathfrak C$. The collineation which carries p into some other ordinary point p_1 carries the above mentioned k lines into k lines through p_1 . Hence every ordinary point lies on exactly k lines of $\mathfrak C$. Let m denote the total number of lines in $\mathfrak C$. Since each line of $\mathfrak C$ contains n ordinary points, and there are n^2 ordinary points in all, it follows that

$$mn = kn^2$$
, or $m = kn$.

Presented to the Society June 15, 1957; received by the editors January 17, 1957 and, in revised form, June 21, 1957.

Now let L_1 be some line of \mathfrak{C} , intersecting L in the point q. Each of the n ordinary points of L_1 lies on k-1 lines of \mathfrak{C} other than L_1 itself. This accounts for n(k-1) lines of \mathfrak{C} . The remaining n lines must all go through q. Thus all of the ordinary lines which pass through any point q on L must belong to the same transitive class and the lemma is proved.

THEOREM 2. If π is dually transitive, it is doubly transitive.

PROOF. It follows from Lemma 1 that, given any line L and any point p on L, the group of collineations which leaves p and L fixed is transitive on the other lines through p. Now if p is on the lines L and L_1 , by considering the product of the two groups which fix p and L on one hand, and p and L_1 on the other hand, we see that the group which fixes p is transitive on lines through p. The dual transitivity implies that the group Σ which leaves p fixed is transitive on lines not through p. Thus, there are exactly two transitive classes of lines under the group Σ . Parker [3] has shown that the number of point transitivity classes under a group of collineations is equal to the number of line classes. Since p is in a class by itself, all other points lie in a single transitive class under Σ . This in turn implies that any two points can be carried into any two points. (It should be noted here that Σ . Hughes has communicated a similar proof to the author.)

REFERENCES

- 1. A. M. Gleason, Finite Fano planes, Amer. J. Math. vol. 78 (1956) pp. 797-807.
- 2. T. G. Ostrom, Double transitivity in finite projective planes, Canadian J. Math. vol. 8 (1956) pp. 563-567.
- 3. E. T. Parker, On collineations of symmetric designs, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 250-351.

MONTANA STATE UNIVERSITY