ON THE HILBERT MATRIX, I
MARVIN ROSENBLUM

1. For fixed k£ <1 the generalized Hilbert matrix is H,
=(m+n+1—k)"1), m, n=0,1, 2, - - .. By a latent root of H; we
mean a complex number N such that there exists a non-null sequence

©

of complex numbers {x,}¢ with the property that

0

2t m+1— k),

n=0
converges to Ax, for all non-negative integers m. It is known (see
[6; 3], and [4]) that 7 csc wk is a latent root of H; if £>0. Taussky
[9] posed the problem of determining whether = is a latent root of
H,. This problem was solved by Kato [5], who applied a general
theory to show that I} has the latent root = when 1/2>k.

We shall prove

THEOREM 1. Every complex number with positive real part is a latent
root of Hy.

2. The Whittaker function W ,, is defined in [11, p. 340] by

1
r <m —k+ ?> Wi ,m(2)a—m=1/2

o 1 k+m—1/2 1 m—k—1/2
= e s+ — s — — ds
fl/z < 2 ) ( 2 ) ’

where £<1/2+Re m and T is the gamma function. For #=0, 1,
2, - -, let ¢,(x)=e*2L,(x), where L, is the nth Laguerre poly-
nomial normalized so that the L2(0, o) inner product

(2.1)

(d’m ¢m) = f e—th(t)Lm(t)dt = 6”'"..
0

Ifx=20

(2.2) fo we_"%(t)dt = (x - %)n<x + %—)ﬂhl

and |¢.(x)| =1 [8, p. 159].
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We define the operator 3¢ by
(2:3) £ @)@ = 10 = B [ Wensle+ 06+ 070
0

By 2.1, 2.2, and the Fubini theorem, if x>0, then

(3Ckpn) () = f f (s + >< - —)_ke“("*'”ds%(t)dt
S e S A A

=T — &+ n)Wi_n_12,0(x)x"1/2
and by 2.4 and 2

(Jck¢n) ¢m) = f f <S - _>n—k<s + ";‘)k—”—l d5¢»(x)dx
1 n+m—k 1 k—n—m—2
(2.5) = fl/2<s - ?) (s + 7) ds

=mn+m+1-—Fk)!

Thus if we consider 3C; as an operator on L%(0, «), then H; is the
matrix representation of 3¢ relative to the complete orthonormal set
{¢n}. Henceforth we shall take « to be a complex number such that
—1/2<Reu<1/2, k<1, and f(x) = Wi,.(x)x~!. The equation

(2.6) 7 sec wuf(x) = (3Cf)(x)

is a particularization of an equation noted by Hari Shanker [7].
Hence a reasonable candidate for a solution {x,} of the matrix equa-
tion

2.7 E (n+m+1— k)"x, = 7 sec mux,
n=(
is given by
(2.8) X = f f(D)pa(t)dt.
0

In the remainder of this note we shall show that indeed the {x, |
defined by (2.8) satisfy (2.7).

3. From [1, Chapter 6], we know that f(x)=0(x~V/2~IReul) and
g(x) = Win_10(x)x 2=0(log x) as x—0, and f(x)=0(e"""’x),
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g(x)=0(e*/*x*) as x— x. It follows from these estimates that

fEL(0, «) so
wl = [ los0las [Clolas

and the x, are uniformly bounded. Also, the integrals in the following
calculation are absolutely convergent so we may freely change the
orders of integration. From (2.6), (2.8), and (2.4),

T SEC TUXy,, = T SEC wuf J(2)pm(x)dx
0

(3.1)

Il

[ Gaun@onax = [ s s

= fwfwe‘”f(x)dx (s — i>m_k<s + i)Ic_m_lds.
1/2v 0 2 2

Put g=(s—1/2)(s+1/2)71, so s=2"1(1+3)(1 —2)~' and

T S€C TUX,

= lim fon: exp l:——;_— (1 4+ 2)(1 — z)“l] f(x)dx(1 — 2)~'z"*dz.

T—-1—

But [8, p. 97]

«©

1
exp [_7 a(1 + 2)(1 — Z>"J<1 — )71 = 2 5(®),

n=0

where the series converges uniformly in x and z for 0=x< «, 0=2
=<T<1. Hence

T «w

lim D wusmtmRdg

T-1— J o =0

Il

T S€C TUXy,

e T
lim ) x, Zntm—kdz
T=1— a=o0 0

lim > (n4+m 4+ 1 — k)"lx, Trimti—k

T-1— =0

I

lim >, (n4+m+1— B, T

T-1— 50

Since the x, are uniformly bounded we may apply the Littlewood
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Tauberian theorem [10, p. 233] to this last expression and infer that
(2.7) is true. Finally, w=m sec 74 maps the strip —1/2<Re u<1/2
onto the open half-plane 0 <Re w, so the proof of Theorem 1 is
complete.

4. If we suppose k—1/2<u<1/2, =0, then by (2.1) and (3.1),
f(x), (x>0), and xg, x1, %2, - - -, are positive. Upon setting A = sec wu
we have

THEOREM 2. If k<1/2 and A=, or if 1>k=1/2 and N> 7 csc 7wk,
then there exists a positive root vector {x,,} corresponding to the latent
root N of H,.

This theorem furnishes a solution to a problem posed by Kato in
[5, p. 80].

5. I am indebted to the referee for

THEOREM 3. Consider Hy, as a linear operator on the sequential Ba-
nach space 19, where 2 <q< . Then Hy is bounded and w sec wu is an
eigenvalue of Hy whenever | Re u| <1/2-1/q.

Proor. The boundedness of H; follows from [2, Theorem 364,
p. 258]. The restriction on Re u guarantees that fEL?(0, «), where
p~1+¢ '=1. Since the ¢, are uniformly bounded it follows from
F. Riesz’s extension of the Hausdorff-Young theorem [12, p. 191]
that {xn} given by (2.8) belongs to /4. Finally, by 2.7, = sec 7u is an
eigenvalue of Hj.
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