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Introduction. The ring {R; +, - } is said to have unique addition
if there exists no other ring {R; +’, -} having the same multiplica-
tive semigroup {R; - }.

If {R; +, - } and {R; +7, - } are different rings, then the 1-1 map-
ping 8: af=a, a ER, of {R; +, } onto {R; +7, } is multiplicative
but not additive. Conversely, if there exists a 1-1 mapping 0 of ring
{R; +, -} ontoring {S; +’, -} that is multiplicative but not addi-
tive, then the ring R does not have unique addition. For we need
only define 4+’ on R by: a+'b=(ad+’'b6)6! to obtain a new addition
operation on R. Thus, it is clear that every 1-1 multiplicative map-
ping of ring R onto some ring S is additive if and only if R has unique
addition.

Rickart [1] has shown that a semi-simple! ring satisfying certain
minimum conditions has unique addition. We shall extend Rickart’s
results to a larger class of rings with minimum conditions in this
paper. We have not been able to find any general results for rings
without minimum conditions.

Preliminary remarks. If the multiplicative semigroup {R; . } can
be made into a ring, then there must exist a unique zero element 0
in R such that 0a=a0=0 for every a&R. Let us assume that R
has a zero element 0. An operation o on R will be called a DO-opera-
tron if the following two conditions are satisfied:

(D) (@aob)c=acobe, c(aod)=caoch,a, b, cER.

(O) ao0=00a=0, a&ER.

If aob=0 for every a, b& A4, a subset of R, then o is said to vanisk
on 4.

A ring without unique addition has DO-operations defined on it in
an obvious way. Thus, if {R; +, -} and {R; +’, -} are different
rings, define o on R as follows:

aob=(a+0b) — (a+"0b), e, b E R.

It is easily verified that o is a DO-operation that does not vanish on
R.
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! While Rickart does not specifically say that the ring is semi-simple in his Theo-
rem II, it is not difficult to show that his assumptions imply semi-simplicity.
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It is clear from our remarks above that if all DO-operations on a
ring R vanish on R, then R has unique addition. This fact will play a
primary role in proving the uniqueness of addition on the rings of the
next section.

We shall designate by A7 (4% the right (left) annihilator of the
subset 4 of a ring R. We shall also designate by £(R) the lattice of
all right ideals of R and by £4(R) the sublattice containing all
AE L(R) for which ANB =0 for every nonzero B& £(R).

Rings with zero singular ideal. If R is a ring, the set
RA = {x; x € R, v € AR}

is an ideal of R, called the singular ideal in [2]. We shall assume in
the remainder of the paper that R is a ring such that

RA = 0.
For each 4 E£(R), let us define
A* = {x;x © R, x4 € £A(R)},

where x4 = {y; xy&A } It is easily shown that 4°& £(R), and that
s is a closure operation on £(R) [3, §6].

Lemma 1. If AEL(R) and o is a DO-operation on the ring R that
vanishes on A, then o vanishes on A°.

Proor. Let x, y&A* and B=x"'4MNy !4, an element of £4(R).
Since xBCA4 and yBCA4, (x o y)B=0; and therefore x o y =0 since
(x 0 y)*€ £4(R). This proves the lemma.

A minimal nonzero element of £/(R)= {A"; AEL(R)}, if such
exists, is called an atom. The closure operation s on £(R) is called
atomic if each nonzero element of £°(R) contains at least one atom.
The union S of the atoms of £°(R) is called the base of R. It may be
shown that .S is an ideal of R and that S*=0 if and only if s is atomic.

If R is a semi-simple ring with minimal right ideals and if the union
S of the minimal right ideals of R is such that S'=0, then clearly
RA =0 and s is an atomic closure operation on £(R). An example of a
ring that satisfies our assumptions but is not semi-simple is given
below.

ExaMmpPLE 1. Let I be the ring of integers and R=enl+enl+esl,
the ring of 2X2 triangular matrices over I. This ring has a radical,
namely the nilpotent ideal en]. Each 4 & £2(R) necessarily contains
elements of the form kien;+keesr with k;5#0. Clearly, then, RA=0.
The right ideals enR and exR are atoms of £°(R). Hence s is atomic
even though the ring R itself has no minimal right ideals.
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If s is atomic, it is known [3, 6.9] that for xER, (xR)* is an atom
of £4(R) if and only if x" is a maximal element (#R) of £:(R).

LeEMMA 2. If x, yER are chosen so that x"+y"C L4(R), then x 0 y =0
for every DO-operation o on R.

Proor. Since (x o y)x"=(x 0 ¥)y"=0, (x0 y)(x*+y)=0 and x 0 y
=0.

LeEmMMA 3. If s is atomic and A is an atom of £*(R) such that A" is
not a maximal element of £*(R), then every DO-operation vanishes on A.

Proor. Let o be a DO-operation on R. If x and y are nonzero ele-
ments of 4 such that x7>y", then x"+y € £4(R) and x0y=0 by
Lemma 2. If "=y, there must exist some nonzero z& A such that
z7#x", for otherwise 47 =x", a maximal element of £*(R). Now (y+2)"
is a maximal element of £°(R) and (y+3)"#x"; hence x o (y+2) =0.
Since [x 0 (y+2)|s"=(x 0 ¥)2=0and (x 0 y)x" =0, (x 0 y)(x"+2z)=0
and x o y=0. This proves the lemma.

The reason for the hypothesis that A~ is not maximal in £¢(R) is
apparent if we let R be a field. Then R is an atom of £*(R) and
Rr=0, a maximal element of £%(R). However, not all fields have
unique addition, as Rickart shows in his paper.

LEMMA 4. If s is atomic and AE £(R) is an atom such that A" is
maximal in £°(R), then there exists an atom BE £2(R) such that Br=Ar
and B is an integral domain.

ProoOF. Since RA=0, there exists an atom BE£*(R) such that
BMA=0. Thus xb#0 and xbb’£0 for each nonzero x&E4 and
b, ¥’EB. Hence B is an integral domain, with B =A4r.

Let us call two atoms 4 and B of £°(R) perspective [3, §6], and
write A~B, if and only if a”=b" for some nonzero a &4 and bEB. If
R is semi-simple, two minimal right ideals are perspective if and only
if they are isomorphic as right R-modules. We shall also call an atom
A of £:(R) isolated if B" is a maximal element of £*(R) for every
B~A. ’

LemMA 5. If s is atomic and o is a DO-operation on the ring R, then
o vanishes on each nonisolated atom of £:(R).

ProoF. Let 4 be a nonisolated atom of £*(R). If A7 is not maximal
in £(R), o vanishes on 4 by Lemma 3. If 47 is maximal, then by
Lemma 4 there exists an atom B such that B'=A4" and B is an inte-
gral domain. Since B is nonisolated, there exists an atom C~A4 such
that Cr is not maximal in £¢(R). Also C~B and there exist nonzero
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bEB and ¢&C such that b"=c¢". Clearly 86B#0, and therefore ¢B 0.
Since o vanishes on C, ¢(x 0 y) =c¢x o cy=0 for every x, y&B. Hence
b(xoy)=bxoby=0 for every x, yEB, and o vanishes on B, and
also on B=(bB)* by Lemma 1.

Now for any nonzero a&A4, aB#0. Since a(x o y) =0 for every
x, yEB, o vanishes on aB and also on 4 =(aB)*. This proves the
lemma.

We might suspect from Lemma 5 that if the ring R has no isolated
atoms, so that every DO-operation vanishes on each atom, then the
ring has unique addition. That this is not true is illustrated by the
following example.

ExaMPLE 2. Let F be the field of integers modulo 2 and R=euF
+enF4-esnF+enF be a subring of the ring of 3 X3 matrices over F.
Define the mapping 6 of R onto R as follows:

if a = D iaien + aes, let af = a + onoees.

It is an easy exercise to prove that § is a 1-1 multiplicative mapping
of R onto R and that 62 is the identity mapping. Since

(611 + 621)9 = e + e + €31, €110 + €210 = e + e,
clearly 6 is not additive on R. If

b= Z Bieir + Bess,

then R has another addition -+’ defined by:
a +’ b= (00 + b0)9 =a + b + (Ot1,32 + azﬁl)eu.

All the atoms of £*(R) for this example are perspective, and one
of them, namely enF-+esF, has an annihilator esF--eF which is
not maximal in £*(R). Thus every DO-operation o vanishes on each
atom of £°(R) by Lemma 5, although o does not necessarily vanish
on R, since R does not have unique addition.

It is clear from this example that some further restriction must be
placed on the ring R to insure unique addition. We shall give two
possible ways of doing this.

THEOREM 1. If s is atomic and the base S of R is such that S*=0, and
if £(R) has no isolated atoms, then the ring R has unique addition.

PRrOOF. Let 0 be a DO-operation on R. By Lemma 5, o vanishes on
each atom of £*(R). If x, yER, then c¢(x 0 y) =cx o cy=0 for every ¢
in some atom C. Since S"=0, evidently x o y=0. This proves the
theorem.
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The ring R of Example 1 satisfies the conditions of Theorem 1.
Therefore addition is unique for this ring. In Example 2, S=R and
=g F+e3:F#0.

THEOREM 2. If s is atomic and, for each atom A of £*(R), A" is not
maximal in £2(R), then the ring R has unique addition.

PRrOOF. Let o be a DO-operation on R. If A and B are atoms and
x&A, yEB, then xo0y=0 by Lemma 2 if x"5y". If x"=y"#R, we
may select a nonzero z&A4 such that z'#x". Since (x+2z) 5y,
(x+2)0oy=0 by Lemma 2. Hence [(x+2)0y]z"=(x07%)z =0,
(x o y)x"=0, and x 0 y=0. We conclude that x 0 y=0 if x and y are
in atoms of £2(R).

If x, yER, then for every aE A4, an atom of £*(R), either xa=0 or
(xa)™ is a maximal element of £*(R), and similarly for ya. Hence each
of xa and ya is in an atom of £*(R), and (x 0 y)a=xa o ya=0 by the
previous paragraph. Thus (x 0 )S=0 and x 0 y =0 since S'=0. This
proves the theorem.

The ring R of Example 2 fails to satisfy the conditions of Theorem 2
in that many of the atoms have maximal annihilators.
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