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Introduction. The ring {R; +, • } is said to have unique addition

if there exists no other ring {R; +', • } having the same multiplica-

tive semigroup {7?; • J.

If {R; +, ■ } and \R; +', ■ } are different rings, then the 1-1 map-

ping 8: ad = a, a£F, of {7?; +, • } onto \R; +', • } is multiplicative

but not additive. Conversely, if there exists a 1-1 mapping 6 of ring

{R; +, ■ } onto ring {S; +', ■ } that is multiplicative but not addi-

tive, then the ring R does not have unique addition. For we need

only define +' on 7? by: a-\-'b = (a6-\-'b9)d~l to obtain a new addition

operation on R. Thus, it is clear that every 1-1 multiplicative map-

ping of ring R onto some ring 5 is additive if and only if 7? has unique

addition.

Rickart [l ] has shown that a semi-simple1 ring satisfying certain

minimum conditions has unique addition. We shall extend Rickart's

results to a larger class of rings with minimum conditions in this

paper. We have not been able to find any general results for rings

without minimum conditions.

Preliminary remarks. If the multiplicative semigroup {R; ■ } can

be made into a ring, then there must exist a unique zero element 0

in 7? such that 0a = a0 = 0 for every a£F. Let us assume that R

has a zero element 0. An operation o on R will be called a DO-opera-

tion if the following two conditions are satisfied:

(D)   (a o b)c = ac o be, c(a o b) —cao cb, a, b, c£F.

(O) ao0=0o8 = 0, aER.

If a o b = 0 for every a, bEA, a subset of R, then o is said to vanish

on A.

A ring without unique addition has DO-operations defined on it in

an obvious way. Thus, if {R; +, ■ } and {R; +', • } are different

rings, define o on R as follows:

aob = (a+ b) - (a +' b), a, b £ R.

It is easily verified that o is a DO-operation that does not vanish on

R.
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1 While Rickart does not specifically say that the ring is semi-simple in his Theo-

rem II, it is not difficult to show that his assumptions imply semi-simplicity.
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It is clear from our remarks above that if all DO-operations on a

ring R vanish on R, then R has unique addition. This fact will play a

primary role in proving the uniqueness of addition on the rings of the

next section.

We shall designate by Ar iA1) the right (left) annihilator of the

subset A of a ring R. We shall also designate by £(E) the lattice of

all right ideals of R and by £A(E) the sublattice containing all

AQ£(R) for which Ar\B?*0 for every nonzero E££(E).

Rings with zero singular ideal. If R is a ring, the set

RA = {x;xQ R, x' Q £A(E)}

is an ideal of R, called the singular ideal in [2]. We shall assume in

the remainder of the paper that R is a ring such that

RA = 0.

For each ^4££(E), let us define

As = {x; x£ R, x~lA £ £A(E)},

where x_1^4 = {y; xy£^4 }. It is easily shown that ^4"££(E), and that

5 is a closure operation on £(E)  [3, §6].

Lemma 1. If AQ£iR) and o is a DO-operation on the ring R that

vanishes on A, then o vanishes on A".

Proof. Let x, yQA3 and B=x~1Ar\y~1A, an element of £A(E).

Since xBQA and yBQA, (xoy)5 = 0; and therefore xoy=0 since

(x o y)r££A(E). This proves the lemma.

A minimal nonzero element of £'iR)= {A*; ^4££(E)}, if such

exists, is called an atom. The closure operation s on £(E) is called

atomic if each nonzero element of £"(E) contains at least one atom.

The union S of the atoms of £S(E) is called the base of R. It may be

shown that 5 is an ideal of R and that 5' = 0 if and only if 5 is atomic.

If R is a semi-simple ring with minimal right ideals and if the union

S of the minimal right ideals of R is such that 5( = 0, then clearly

RA = 0 and 5 is an atomic closure operation on £(E). An example of a

ring that satisfies our assumptions but is not semi-simple is given

below.
Example 1. Let 7 be the ring of integers and E = en7+e2i7-(-e227,

the ring of 2X2 triangular matrices over 7. This ring has a radical,

namely the nilpotent ideal e2i7. Each A £ £A(E) necessarily contains

elements of the form &ien + &2e2i with kt9*0. Clearly, then, EA = 0.

The right ideals enR and e22R are atoms of £8(E). Hence 5 is atomic

even though the ring R itself has no minimal right ideals.
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If 5 is atomic, it is known [3, 6.9] that for x£F, (xR)s is an atom

of £"(7?) if and only if xT is a maximal element (r^R) of £S(R).

Lemma 2. 7/x, yER are chosen so that xr+y££A(F), then x o y = 0

for every DO-operation o on R.

Proof. Since (x o y)xr = (x o y)yr = 0, (xo y) (xr +yr) = 0 and x o y

= 0.

Lemma 3. If s is atomic and A is an atom of £"(R) such that A" is

not a maximal element of £"(R), then every DO-operation vanishes on A.

Proof. Let o be a DO-operation on R. If x and y are nonzero ele-

ments of A such that xr^yr, then xr+yrE£A(R) and xoy = 0 by

Lemma 2. If xr = yr, there must exist some nonzero z£^4 such that

zT9£xr, for otherwise Ar = xr, a maximal element of £'(R). Now (y-\-z)r

is a maximal element of £S(R) and (y+z)r^xr; hence x o (y-\-z) =0.

Since [x o (y-\-z)]zr = (x o y)zr = 0 and (xoy)xr = 0, (x o y)(xr+zr) =0

and x o y = 0. This proves the lemma.

The reason for the hypothesis that AT is not maximal in £S(R) is

apparent if we let F be a field. Then R is an atom of £'(R) and

Fr = 0, a maximal element of £"(R). However, not all fields have

unique addition, as Rickart shows in his paper.

Lemma 4. If s is atomic and AE£"(R) is an atom such that AT is

maximal in £"(R), then there exists an atom BE£"(R) such that Br = Ar

and B is an integral domain.

Proof. Since RA = 0, there exists an atom 73££S(F) such that

BC\Ar = 0. Thus xbp^O and xbb'^0 for each nonzero xEA and

b, b'EB. Hence B is an integral domain, with Br = Ar.

Let us call two atoms A and B of £'(R) perspective [3, §6], and

write A~B, if and only if a'=br for some nonzero aEA and bEB. If

R is semi-simple, two minimal right ideals are perspective if and only

if they are isomorphic as right F-modules. We shall also call an atom

A of £"(R) isolated if BT is a maximal element of £"(R) for every

B~A.

Lemma 5. If s is atomic and o is a DO-operation on the ring R, then

o vanishes on each nonisolated atom of £S(R).

Proof. Let A be a nonisolated atom of £S(R). If Ar is not maximal

in £*(F), o vanishes on A by Lemma 3. If Ar is maximal, then by

Lemma 4 there exists an atom B such that Br = Ar and B is an inte-

gral domain. Since B is nonisolated, there exists an atom C~^4 such

that Cr is not maximal in £"(R). Also C~73 and there exist nonzero
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bQB and cQC such that bT = C. Clearly bB9*0, and therefore cB9*0.

Since o vanishes on C, c(x o y) =cx o cy = 0 for every x, y£E. Hence

bixo y)=bxo by = 0 for every x, y£E, and o vanishes on bB, and

also on B = ibB)s by Lemma 1.

Now for any nonzero aQA, aB9*0. Since a(xoy)=0 for every

x, y£E, o vanishes on aB and also on A = iaB)s. This proves the

lemma.

We might suspect from Lemma 5 that if the ring R has no isolated

atoms, so that every DO-operation vanishes on each atom, then the

ring has unique addition. That this is not true is illustrated by the

following example.

Example 2. Let E be the field of integers modulo 2 and R = enF

+e2iE+e3iE-f-e32E be a subring of the ring of 3X3 matrices over F.

Define the mapping 0 of R onto R as follows:

if a =  22,- oiidi + ae32,        let a0 = a + aia2e3X.

It is an easy exercise to prove that 0 is a 1-1 multiplicative mapping

of R onto R and that 02 is the identity mapping. Since

(en + e2i)0 = en + «2i + eil;        en0 + e2i0 = «n + e2i,

clearly 0 is not additive on R. If

b = 2 /3,-eii + ^e32,

then E has another addition +' defined by:

a +' b = (ad + bd)d = a + b + (a^ + a2/3i)e3i.

All the atoms of £8(E) for this example are perspective, and one

of them, namely e3iE-|-e32E, has an annihilator e3iE+e32E which is

not maximal in £*(E). Thus every DO-operation o vanishes on each

atom of £*(E) by Lemma 5, although o does not necessarily vanish

on E, since E does not have unique addition.

It is clear from this example that some further restriction must be

placed on the ring R to insure unique addition. We shall give two

possible ways of doing this.

Theorem 1.7/5 is atomic and the base S of Ris such that Sr = 0, and

if £'(E) has no isolated atoms, then the ring R has unique addition.

Proof. Let o be a DO-operation on R. By Lemma 5, o vanishes on

each atom of £'(E). If x, yQR, then c(x o y) =cx o cy = 0 for every c

in some atom C. Since Sr = 0, evidently xoy = 0. This proves the

theorem.
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The ring E of Example 1 satisfies the conditions of Theorem 1.

Therefore addition is unique for this ring. In Example 2, S = R and

S' = e3iE+e32E^0.

Theorem 2. If s is atomic and, for each atom A of £"(E), Ar is not

maximal in £"(E), then the ring R has unique addition.

Proof. Let o be a DO-operation on R. If A and B are atoms and

xQ-A, yQ-B, then xoy = 0 by Lemma 2 if xr9*yr. If xr = yr9*R, we

may select a nonzero zQA such that zr9*xT. Since ix-\-z)r9*yr,

(x+z)oy = 0 by Lemma 2. Hence [(x-f-z) oy]zr=(x oy)zr = 0,

(x o y)xr = 0, and x o y = 0. We conclude that x o y = 0 if x and y are

in atoms of £*(E).

If x, yQR, then for every aQA, an atom of £"(E), either xa = 0 or

(xa)r is a maximal element of £"(E), and similarly for ya. Hence each

of xa and ya is in an atom of £"(E), and (x o y)a=xa o ya = 0 by the

previous paragraph. Thus (xoy)5 = 0 and xoy = 0 since Sl = 0. This

proves the theorem.

The ring R of Example 2 fails to satisfy the conditions of Theorem 2

in that many of the atoms have maximal annihilators.
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