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1. Introduction. The intersection of the surfaces of two convex

bodies 5, ii— 1, 2) in an w-dimensional normed linear space L„ would

appear to have a complicated structure. However, there exists a

relatively simple approach to this matter via a concept which I have

previously called "a three point convexity property P3." See Defini-

tion 1 below or [6]. This concept applies to sets which include the

set 5iVJ52 as a special case. Hence, it not only yields simplicity but

also adds generality. At first glance the result which is the simplest

to state and the easiest to understand is the following.

Theorem 0. Let S, (* = 1, 2) be two compact convex bodies in L3

whose interiors have a nonempty intersection. Let Bi denote the boundary

of Si. If the intersection Bi ■ 7J2 is contained in the interior of the convex

hull of S1VJS2, then Bi-B2 is the union of a finite number of disjoint

simple closed curves.

In the formal treatment of §3 we obtain the above theorem as a

special case of a more general theorem for sets in Ln. In §4 a signifi-

cant theorem about isolated points of local nonconvexity is obtained

for closed sets having property P3, and contained in a topological

linear space.

2. Definitions and resume. In order to achieve economy of effort,

the following notations are used.

Conventions. Set theoretic product, union and difference are de-

noted by •, KJ and ~ respectively. The letter L denotes a topological

linear space, whereas Ln denotes a finite dimensional normed linear

space of dimension n. A variety of L is a translate of a proper or im-

proper linear subspace of L. The interior of S relative to L is indicated

by int S, whereas the interior of S relative to the minimal variety con-

taining it is indicated by intv S. Let 73(5) denote the boundary of .S.

The convex hull of 5 is indicated by conv S, the line segment deter-

mined by points x and y by xy, so that xy= {Xx+(1— \)y, O^X^l},

and the corresponding line by E(x, y). The segment xy is a crosscut

of the complement of 5 if x£5, y£5 and if 5intvxy = 0.

Definition 1. A set S in a linear space is said to possess property Ps
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if for any three points x, y, z in S at least one of the segments xy, xz, yz

is in S.

Definition 2. A set SEE is locally convex at a point pES if there

exists a neighborhood N of p such that for each pair of points x and y in

S-N it is true that xyES. A point of S which is not a point of local

convexity is called a point of local nonconvexity.

Definition 2 is different from that used by Tietze [5] and others

(see Klee [4]). This matter is discussed in §4, where it is significant.

Definition 3. The set of all points of local nonconvexity of S is

denoted by Q.

Definition 4. The convex kernel K of S is the set of all points z such

that zx C 5 whenever x £ S. (The set S is said to be star shaped with respect

to each point of K. The convex kernel of a set SEE is convex. See Brunn

[3]0
Resume. In my previous paper [6], the study was primarily re-

stricted to sets in E2, the Euclidean plane. The treatment there was

relatively complete as far as E2. However, several results proved

there also hold in L. We need them in §3 where SEEn, and in §4

where SEE.
A. Let S be a closed set in a topological linear space L. If S has prop-

erty Pi, then QEK- Furthermore, we have QEB(S), so that QEB(K).

B. If xy is a crosscut of the complement of the set S in statement A,

and if zEK, then the triangle conv (x\Jy\Jz) contains a point qEQ

such that if a£intv xq, &£intv yq, then ab(£.S-

In Remark A, the fact QEK follows readily from Definitions 1—4.

The fact QEB(S) is trivial if SEE,,; if SEE, then it follows quickly
from elementary properties of the neighborhoods of L (see §4 and

the proof of Theorem 2; also [2] and [7]). The proof of Remark B

involves only a two-dimensional variety of L, and hence it will not

be repeated.

3. Main theorem. The following sequence of lemmas gives us an

elementary breakdown of the theory leading to Theorem 1.

Lemma 1. Suppose SELn is a closed set having property P3. Let A be

an r-dimensional simplex whose vertices Xi, • • ■ , xr+i belong to S, and

suppose /£intvA. Then there exist points utESB(A), (i = \, 2), such

that /£intv UiU2.

Proof. The result is clearly true for r = 1. So suppose it is true for

simplices up to and including those of dimension r — 1. Let L(xi, t)

•conv (Uo+1 xa)=s. Since <£intvA, the set 5 is a point, and

^£intv conv (U2+1 x„).   By   our   induction   assumption   there   exist
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points Vi (* = 1, 2) such that i\-£S-5(conv (U2+1 xa)), and such that

5£intv w2. If V1V2CS then ^£5, and if we let xi = «i, s = u2, we have

/£intv«iM2 with m,-£E(A)-S. If, however, s£S, then by property

P3 either xri>i or Xiv2 belongs to S. Without loss, suppose xiViCS. The

set L(v2, t) -xiVi = ui is a point since <£intv conv (xiUz/iU%). Letting

u2=m2i we get <£intv uxu2, and it is easy to prove that m,-£E(A) -5.

Standing hypothesis in Lemmas 2-5. We assume in Lemmas 2—5

that 5 is a compact set in Ln, and that 5 has property P3.

Lemma 2. Suppose int K^O where K is the convex kernel of S. If

§£()int conv S, then there exist points x£5, y£S, z£int K such that

xy is a crosscut of the complement of S, and such that

q £ intv conv (lUyUz).

Proof. Choose a point z£int K, and let E(z, q) be the ray con-

taining zq and having z as its endpoint. Let E(z, q) -E(conv S) =t.

Since z# £ int conv .S, it follows that t is a point and /£E(conv5).

Since S is compact, the conv 5 is compact; hence i£conv 5. Since

intv zg£int K, and since g£E(5), it follows that t(£S. Let Hit) be a

hyperplane of support to conv .S at t. Since 2 £77(2) conv S, let A be

an r-dimensional simplex (r^« —1) of minimal dimension in 77(/)

whose vertices belong to H't) ■ S, and which contains t (A must exist;

see Bonnesen and Fenchel [l, p. 9]). Since /£5, and since A has

minimal dimension, we have /£intv A. Moreover, Hit) -S is a closed

set satisfying property P3. Hence, by Lemma 1, there exist points

m,£P(A) -.S such that <£intv uxu2. Since /£5', and since 5 is closed,

there exists a crosscut xy (xy £wiw2) of the complement of S such that

/£intv xy. Furthermore, since z£77(/), and since g£intv zt, we have

(7 £ intv conv (xWyVJz). This completes the proof.

Lemma 3. 7/ xy is a crosscut of the complement of the set S, and if

z£int K, then Qconv ix^Jy^Jz) = q is a point, and

q £ intv conv (x \J y \J z).

Proof. Since z£int K, let N(z) be a spherical neighborhood of z

such that N(z) C.K. Remark B of §2 states that Qconv ixKJyKJz) ̂ 0.

Suppose two points q,:£Q-conv ixKJyVJz) (i=l, 2) exist. Since

int conv (xWA'(z)) £int S, and since int conv (yWAr(z))£int S, we

must have 3<intvxz = 0, gjintvyz = 0, otherwise qiQB(S). More-

over, qi^z. Also since xy<£S, and since q^K, we must have q,9^x,

qi^y. Hence <7;£intv conv (xWyWz). This implies that at least one

of the following conditions holds, L{qi, q2) ■ intv xz=^0, 7,(<?i, q2) ■ intv yz

5*0,  Liqu  q2)-z^0.  Suppose,  without  loss of generality,  that  0
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9^L(qi, q2) ■ (zUintv xz) =s, and that g2£intv qiS. Let N(s) be a spher-

ical neighborhood of s such that N(s) £conv (xWA^(z)) £5. However,

this implies that g2£int conv (qi^JN(s)) £int S, which contradicts

the fact q2EB(S). Hence, we have Q■ conv (x[UyKJz)=q, a single

point, such that g£intv conv (xVJyWz).

Lemma 4. Suppose int K^Ofor the set S, and suppose

q E Q-int conv 5.

Then there exists a closed convex body M(q) such that g£int M(q)

and such that Q- M(q) is homeomorphic to an (n — 2)-dimensional closed

spherical cell whose center corresponds to q.

Proof. Consider the three points x, y, z of Lemma 2, and let N(z)

be a closed w-sphere with center at z such that N(z) Cint K, and such

that N(z) ■ conv (x KJ y VJ q) =0, where, by Lemma 3, qEQ

•intv conv (x\Jy\Jz). The two dimensional variety determined by

x, y, z is denoted by 7,2(x, y, z). Let Ln_2 be an (n — 2)-dimensional

variety such that 7,2(x, y, z)-Ln^2 = z. The set L„_2- N(z) = Cn-2(z)

is an (n — 2) -dimensional sphere with center z. The set conv(xy\J C„~2(z))

= M(q) is an w-dimensional convex body containing a in its interior.

We will prove that M(q) has the property stated in the lemma. First,

for any point pEC„~2(z), Lemma 3 implies that there exists a unique

point f(p)EQ- M(q) such that /(/>)£intv conv(xWyVJ/>). Further-

more for each point q'EQ- M(q) there exists a unique point pECn-z(z)

such that g'£intv conv(xWyW^), because 7,2(x, y, q') ■ C„-2(z)

=pECn-2(z) and because M(q) = {\A + (1-\)B, O^X^l, A=xy,

B — Cn-2(z)\. Hence, the function \f(p): pECn-2(z)} is a biunique

mapping of C„-2(z) onto Q-M(q). To prove it is also continuous for

pECn-i(z), let piECn-2(z) be a sequence such that pi—>p as i—>=°.

Since i2(x, y, pi)—>7,2(x, y, p) as i—»oo , the compactness of Q- M(q)

implies that f(pi)-^>f(p), otherwise conv(xUyUp) would contain at

least two distinct points of Q, in violation of Lemma 3. The inverse of

f(p) is thus also continuous since Ln is a metric space. This completes

the proof.

Lemma 5. For any e>0, the set M(q) in Lemma 4 can be chosen so

that the diameter of M(q) is less than e.

Proof. In the proof of Lemma 4, we may choose z'£intv gz£int K,

and C„(z')Cmt K, x'y'Cconv(xUyWg) so that

M'(q) = conv (x'y' U C„_2(z'))

has diameter less than e, and so that Q-M'(q) is homeomorphic to

Cn_2(z').
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Definition 5. A sefSKQL,,. is said to be a closed in — 2)-dimensional

manifold, if Wilis a compact connected set, and if for each e > 0 each point

x£3H is interior to an n-dimensional closed convex set Mix) of diameter

less than e, such that 9TCM(x) is homeomorphic to a closed in —2)-

dimensional spherical cell in 7,„_2 whose center corresponds to x.

Theorem 1. Hi. Suppose S is a compact set in a finite dimensional

normed linear space L„, and suppose S has property P%.

H2. Assume that the convex kernel of S has interior points ii.e.

intE^O).

H3. Finally, assume that all the points of local nonconvexity of S are

interior to the convex hull of S ii.e. QQint conv S).

C. Then the set of points of local nonconvexity of S consists of a finite

number of disjoint closed in —2)-dimensional manifolds.

Proof. First, the compactness of S and the definition of local non-

convexity imply immediately that the set Q is compact. Let Qi denote

a component of Q. Lemma 5 implies that Q\ is a closed (« — 2)-

dimensional manifold in Ln. Since Q is compact, it can be covered by

a finite subset of the neighborhoods defined in Lemma 4. This implies

that Q will have a finite number of components.

Corollary 1. Let Si and S2 be two compact convex bodies in Ln whose

interiors have a nonempty intersection. If B (Si) ■ B (52) is contained in

the interior of the convex hull of S1VJS2, then E(Si) -E(52) is the union

of a finite number of disjoint closed in —2)-dimensional manifolds.

Proof. The set SiU52 satisfies hypotheses H; (* = 1, 2, 3) of Theo-
rem 1.

Theorem 0 in the introduction can be obtained from Theorem 1 as

follows. For sets in L3 Theorem 1 implies readily that each component

Qi of Q must be homeomorphic to the boundary of a circular two-cell.

Since I is a compact convex body (intE^O) in L3, and since

QidBiK), the Jordan curve theorem as applied to the two-dimen-

sional surface E(E) implies that <2i is a simple closed curve in L3 (no

knots are possible).

4. Isolated points of local nonconvexity. In order to describe in a

topological linear space L what the existence of an isolated point of

local nonconvexity does to the totality of points of local nonconvexity

of S, the following definitions will be needed.

Definition 6. A space L is locally starlike if for each neighborhood

Uip) of p there exists a neighborhood Vip), star shaped from p, such that

pG.Vip)CUip). A corresponding definition holds for a locally convex
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space L. The latter concept is not to be confused with that of Defini-

tion 2, and the usage below will clearly avoid any such confusion.

Definition 7. The set SEE is strongly locally convex at a point PES

if there exists a neighborhood N of p such that S-N is convex. A point

PES which is not a point of strong local convexity is called a point of

mild local nonconvexity.

In a topological linear space L which is locally convex in the sense

of Definition 6, Definitions 2 and 7 are equivalent. However, in

general they are not equivalent. For instance, each neighborhood in

a nonlocally convex topological linear space (in the sense of Defini-

tion 6) is locally convex in the sense of Definition 2 but not strongly

locally convex in the sense of Definition 7. The following theorem

establishes a significant difference between sets S (having property

P3) in 7,2 and in L, where dimension L>2.

Theorem 2. Let S be a closed set in a topological linear space L,

where dimension L>2. Assume that S has property Pz, and that S is

not contained in any two-dimensional variety of L.

If the set Q of points of local nonconvexity of S has an isolated point,

then Q has at most two points (see Definitions 2 and 3).

Proof. Let p be an isolated point of Q. Since a topological linear

space is locally starlike [2; 7], let N(p) be a neighborhood of p, star-

shaped from p, such that N(p) Q = p. Since L is a topological linear

space, it is well known [2; 7] that there exists a neighborhood Ni(p)

EN(p), starshaped from p, such that for any two points uENi(p),

vENi(P) we have uvEN(p). Since p is a point of local nonconvexity

of S, there exist points Xi, yi in S- Nr(p) such that Xiyi(£S, and more-

over from the preceding sentence we have x,yi£./V(£). Since XiyiC|I.S,

there exists a segment xyCxryi such that x£5, yES, .Sintv xy = 0,

xyEN(p), even though xy may not belong to Ni(p). Since N(p) is

starshaped from p, and since xyEN(p), we have conv(x\Jy}Up)

EN(p). Since pEL(x, y), let L(x, y, p) denote the variety determined

by x, y, p. We next prove that Q£7,(x, y, p). Suppose QEE(x, y, p),

and choose qEQ~L(x, y, p). Let L(x, y, p, q) denote the three-

dimensional variety determined by x, y, p, q. Since L(x, y, p, q) is

locally convex relative to the topology obtained by intersecting

neighborhoods of L by L(x, y, p, q), there exists, relative to L(x, y,p,q),

a convex neighborhood V(p)EN(p) L(x, y, p, q), pEV(p). Since

N(p)-Q = p, and since conv(x W y W p) £ N(p), we have Q

■conv(x\Jy\Jp)=p. Hence, by Remark B of §2 there exist points

aEV(p)-intv xp, bE V(p) intv yp such that ab(£.S. Hence, a cross-

cut cd of the complement of 5 exists in V(p) ■ conv (xVJy\Jp). Choose
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a point r£ Vip) intv pq. Since pqQK, and since c£5, ^£5, S'mtv cd

= 0, Remark B of §2 implies that Q ■ conv icVJdVJr) 9*0. Let gi£Q

■ convicVJdVJr). Since Vip) is convex, we have <7i£ F(£)£-/V(p)

with qi9*p. This contradicts the fact Q-Nip)=p. Hence, we have

shown that QQLix, y, p).
Secondly, to prove that Q is contained in a line, choose a point

s£.S~Z(x, y, p) since S(£L(x, y, p). As in the preceding paragraph,

let V(J>) be a three-dimensional convex neighborhood of p such that

Vip)CNip)-Lix, y, p, s). Choose z£ Vip) -intv sp. By Remark B,

just as in the preceding paragraph, there exist points a£F(p)

•intv xp, &£ Vip) intv yp such that ab(£.S. Since aiC^S, property P3

implies that we may, without loss, assume azCS. Since 5 is closed,

and since ab(£S, there exists a point &£intv az such that M(£S. Since

conv(aU6Uz) £ Vip)CNip), we have bhCNip). Hence, since M(£.S,

the reasoning that implies QQLix, y, p) also implies QQLib, h, p).

Since E(x, y, p)Lib, h, p)=Liy, p), we have QQLiy, p).

Finally, to show that Q consists of at most two points, suppose

points <?££>, rQ-Q exist with r between p and q on Lip, q). Since

QQLiy, p), we have Lip, q)—Liy, p). Since Eintvyp = 0, we have

p£intvyr. The set Lip, q)~intv pq is closed; hence, let N(r) be a

neighborhood of r, starshaped from r, such that A'(r) ■ iLip, q)

~intv pq) —0. There exists a neighborhood Niir) of r such that

\Nrir) + il-\)Niir)CNir) (O^Xgl) [7]. Since rQQ, there exist

points u(E:S- N^r), vQ-S-Niir) such that m/C^S. However, uvQNir),

so that mj>- iLip, g)~intv pq) =0. Moreover, since pqQK, and since

W8(£S, we have uvpq = 0, so that uv-Lip, q)=0. Hence, since

QdLiy, p), it is true that Q-conviu\Jv\Jp)=p. Hence, the local

convexity (in the sense of Definition 6) of the variety L(u, v, p) in

the two-dimensional relative topology and Remark B imply the

existence of points u'VJv'(ZS-Nip) such that u'\Jv'(Zconviu\JvVJp)

and 5 intv «V = 0, u'v'C_Nip). Hence, the exact sequence of reasons

that implies <2£E(y, p)£E(x, y, p) also implies that QQLiu', v', p)

and that either QCL{u', p) or (?£7,(z/', p). Suppose that QQLiu', p).

Then since w'£E(y, p), we have QQLiy, p)-L(u', p)=p. This is a

contradiction since q<EQ. Hence, Q has at most two points.

It should be observed that Theorem 2 does not hold for closed sets

SQL2 having Property P3. A closed two-cell whose boundary is the

conventional w-pointed star has property P3, yet it has m isolated

points of local nonconvexity [6].

Theorem 2 and the remarks following Definition 7 imply the follow-

ing result.
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Theorem 3. Let S be a closed set in a locally convex (in the sense of

Definition 6) topological linear space L, where dimension L>2. As-

sume that S has property P3, and that S is not contained in any two-

dimensional variety of L.

If the set of points of mild local nonconvexity of S has an isolated

point, then S has at most two points of mild local nonconvexity.
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