THE INTERSECTION OF TWO CONVEX SURFACES
AND PROPERTY P;

F. A. VALENTINE

1. Introduction. The intersection of the surfaces of two convex
bodies S; (=1, 2) in an n-dimensional normed linear space L, would
appear to have a complicated structure. However, there exists a
relatively simple approach to this matter via a concept which I have
previously called “a three point convexity property P;.” See Defini-
tion 1 below or [6]. This concept applies to sets which include the
set S;\US; as a special case. Hence, it not only yields simplicity but
also adds generality. At first glance the result which is the simplest
to state and the easiest to understand is the following.

THEOREM 0. Let S; (i=1, 2) be two compact convex bodies in L
whose interiors have a nonempty intersection. Let B, denote the boundary
of Si. If the intersection By- B is contained in the interior of the convex
hull of S1\JSs, then Bi-Bs is the union of a finite number of disjoint
simple closed curves.

In the formal treatment of §3 we obtain the above theorem as a
special case of a more general theorem for sets in L,. In §4 a signifi-
cant theorem about isolated points of local nonconvexity is obtained
for closed sets having property Ps;, and contained in a topological
linear space.

2. Definitions and résumé. In order to achieve economy of effort,
the following notations are used.

CoNVENTIONS. Set theoretic product, union and difference are de-
noted by -, \U and ~ respectively. The letter L denotes a topological
linear space, whereas L, denotes a finite dimensional normed linear
space of dimension #. A variety of L is a translate of a proper or im-
proper linear subspace of L. The interior of S relative to L is indicated
by int S, whereas the interior of S relative to the minimal variety con-
taining it is indicated by intv S. Let B(S) denote the boundary of S.
The convex hull of S is indicated by conv S, the line segment deter-
mined by points x and y by xy, so that xy = {)\x-{—(l Ny, 0=A=1 },
and the corresponding line by L(x, y). The segment xy is a crosscut
of the complement of S if x&S, y&S and if S-intv xy=0.

DEFINITION 1. 4 set S in a linear space is said to possess property Ps
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if for any three points x, y, z in S al least one of the segments xy, xz, ¥3
s in S.

DEFINITION 2. 4 set SCL s locally convex at a point p&S if there
exists a neighborhood N of p such that for each pair of points x and y in
SN 1t s true that xyCS. A point of S which is not a point of local
convexity is called a point of local nonconvexity.

Definition 2 is different from that used by Tietze [5] and others
(see Klee [4]). This matter is discussed in §4, where it is significant.

DEFINITION 3. The set of all points of local nonconvexity of S is
denoted by Q.

DEFINITION 4. The convex kernel K of S is the set of all points z such
that zx C.S whenever x &S. (The set S is said to be starshaped with respect
to each point of K. The convex kernel of a set SCL is convex. See Brunn
(3])

RisuME. In my previous paper [6], the study was primarily re-
stricted to sets in E,, the Euclidean plane. The treatment there was
relatively complete as far as FE,. However, several results proved
there also hold in L. We need them in §3 where SCL,, and in §4
where SCL.

A. Let S be a closed set in a topological linear space L. If S has prop-
erty Ps, then QC K. Furthermore, we have QCB(S), so that QCB(K).

B. If xy is a crosscut of the complement of the set S in statement A,
and if 2EK, then the triangle conv (x\Jy\Uz) contains a point ¢&Q
such that if aCintv xq, b&intv yq, then ab(S.

In Remark A, the fact Q CK follows readily from Definitions 1-4.
The fact QCB(S) is trivial if SCL,; if SCL, then it follows quickly
from elementary properties of the neighborhoods of L (see §4 and
the proof of Theorem 2; also [2] and [7]). The proof of Remark B
involves only a two-dimensional variety of L, and hence it will not
be repeated.

3. Main theorem. The following sequence of lemmas gives us an
elementary breakdown of the theory leading to Theorem 1.

LeEmMA 1. Suppose SCL, is a closed set having property P;. Let A be
an r-dimensional simplex whose vertices xi, - - -, X041 belong to S, and
suppose tEintv A, Then there exist points u;SS-B(4A), (i=1, 2), such
that t&intv uin,.

Proor. The result is clearly true for r=1. So suppose it is true for
simplices up to and including those of dimension r—1. Let L(x, #)
-conv (U3 x,)=s. Since tCintvA, the set s is a point, and
s€intv conv (U;™! x,). By our induction assumption there exist
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points v; (=1, 2) such that v;&€S-B(conv (U;*! x,)), and such that
s&intv vw.. If 9. CS then s&S, and if we let x;=u;, s =u,, we have
teintv wu, with 4,EB(A)-S. If, however, s&.S, then by property
Pj; either x1v; or x19; belongs to S. Without loss, suppose x19:CS. The
set L(vy, t) - x01=u, is a point since t&intv conv (x,\U»,\Uv,). Letting
v3=u,, We get t&intv uu,, and it is easy to prove that #;EB(A)-S.

Standing hypothesis in Lemmas 2-5. We assume in Lemmas 2-5
that .S is a compact set in L,, and that S has property P;.

LEMMA 2. Suppose int K0 where K is the convex kernel of S. If
g&Q-int conv S, then there exist points xES, yES, 2&int K such that
xy is a crosscut of the complement of S, and such that

¢ € intv conv (x \J y U z).

ProoF. Choose a point z&int K, and let R(z, g) be the ray con-
taining z¢ and having z as its endpoint. Let R(3, q)-B(conv S) =¢.
Since zgCint conv S, it follows that ¢ is a point and ¢& B(conv S).
Since S is compact, the conv S is compact; hence ¢&conv S. Since
intv ggCint K, and since ¢& B(S), it follows that t& S. Let H(¢) be a
hyperplane of support to conv S at ¢. Since t€H(t) -conv S, let A be
an r-dimensional simplex (»=<#—1) of minimal dimension in H(f)
whose vertices belong to H(t)-S, and which contains ¢ (A must exist;
see Bonnesen and Fenchel [1, p. 9]). Since &S, and since A has
minimal dimension, we have t&intv A. Moreover, H(t) S is a closed
set satisfying property P;. Hence, by Lemma 1, there exist points
u;&B(A)-S such that {E€intv uu,. Since ¢S, and since S is closed,
there exists a crosscut xy (xy Cuius) of the complement of .S such that
t€intv xy. Furthermore, since 2 H(¢), and since ¢€intv zt, we have
g&€intv conv (x\Jy\Uz). This completes the proof.

LemMMA 3. If xy is a crosscut of the complement of the set S, and if
z€int K, then Q- conv (x\Jy\Jz) =q 15 a point, and

g € intv conv (x\J y U z).

Proor. Since z€int K, let N(z) be a spherical neighborhood of z
such that N(z) CK. Remark B of §2 states that Q-conv (x\Uy\Uz) 0.
Suppose two points ¢;€Q-conv (x\Jy\Uz) (i=1, 2) exist. Since
int conv (x\UN(z)) Cint S, and since int conv (yUN(2)) Cint .S, we
must have g¢;-intv xz=0, ¢;-intv y2=0, otherwise ¢;&EB(S). More-
over, ¢:>z. Also since xy (S, and since ¢;€K, we must have g;%x,
¢:#y. Hence ¢;€intv conv (x\Jy\Uz). This implies that at least one
of the following conditions holds, L(g1, ¢z) - intv x25%0, L(q, ¢2) - intv yz
#0, L(q1, ¢2)-270. Suppose, without loss of generality, that 0
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#= L(q1, ¢2) - (2\Yintv xz) =s, and that ¢;Eintv g5. Let N(s) be a spher-
ical neighborhood of s such that N(s) Cconv (x\JN(2)) CS. However,
this implies that ¢.&int conv (¢:\JJN(s)) Cint .S, which contradicts
the fact ¢2&B(S). Hence, we have Q-conv (x\Jy\Uz)=q, a single
point, such that ¢&intv conv (x\Jy\Uz).

LEMMA 4. Suppose int K £0 for the set S, and suppose
g € Q-int conv S.

Then there exists a closed convex body M(q) such that g&int M(q)
and such that Q- M(q) is homeomorphic to an (n—2)-dimensional closed
spherical cell whose center corresponds to q.

Proor. Consider the three points x, v, z of Lemma 2, and let N(z)
be a closed n-sphere with center at z such that N(z) Cint K, and such
that N(z)-conv (x Uy\Ugq) =0, where, by Lemma 3, ¢ & Q
-intv conv (x\Jy\Uz). The two dimensional variety determined by
x, ¥, z is denoted by Li(x, y, 2). Let L._» be an (#—2)-dimensional
variety such that Ls(x, ¥, 2)-La.a=2. The set L,_s- N(2)=Cr2(2)
isan (n —2)-dimensional sphere with centerz. Thesetconv(xy\J C,_2(2))
= M(q) is an n-dimensional convex body containing g in its interior.
We will prove that M(q) has the property stated in the lemma. First,
for any point p & C,_2(z), Lemma 3 implies that there exists a unique
point f(p)EQ-M(g) such that f(p)Eintv conv(xJy\Up). Further-
more for each point ¢’ €Q- M(q) there exists a unique point p& Cn_s(2)
such that ¢'&intv conv(x\Jy\Up), because Li(x, y, ¢') Cn2(2)
=pECos(z) and because M(q)={NA+(1—N)B, 0S\=1, 4 =xy,
B=C,._2(z)}. Hence, the function {f(p): pEC,._g(z)} is a biunique
mapping of C,_s(z) onto Q- M(g). To prove it is also continuous for
pPEC,_s(z), let p,ECas(2) be a sequence such that p;—p as 1— .
Since Li(x, v, p:)—La(x, y, p) as i—», the compactness of Q- M(q)
implies that f(p.)—f(p), otherwise conv(x\Jy\Up) would contain at
least two distinct points of Q, in violation of Lemma 3. The inverse of
f(p) is thus also continuous since L, is a metric space. This completes
the proof.

LemMMA 5. For any €>0, the set M(q) in Lemma 4 can be chosen so
that the diameter of M(q) s less than e.

ProoF. In the proof of Lemma 4, we may choose 2’ Sintv gzCint K,
and C,(z") Cint K, x"y' Cconv(x\Uy\Ugq) so that

M'(q) = conv («'y' U C,_2(2))

has diameter less than e, and so that Q- M’(g) is homeomorphic to
Cn—2(2').
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DEFINITION 5. 4 set MC L, is said to be a closed (n—2)-dimensional
manifold, if M is a compact connected set, and if for each € >0 each point
x &N 1s wnterior to an n-dimensional closed convex set M(x) of diameter
less than €, such that M- M(x) is homeomorphic to a closed (n—?2)-
dimensional spherical cell in L,_o whose center corresponds to x.

THEOREM 1. Hi. Suppose S is a compact set in a finite dimensional
normed linear space L,, and suppose S has property Ps.

H,. Assume that the convex kermel of S has interior points (i.e.
int K0).

H;. Finally, assume that all the points of local nonconvexity of S are
interior to the convex hull of S (i.e. QCint conv S).

C. Then the set of points of local nonconvexity of S consists of a finite
number of disjoint closed (n—2)-dimensional manifolds.

Proor. First, the compactness of S and the definition of local non-
convexity imply immediately that the set Q is compact. Let Q; denote
a component of Q. Lemma 5 implies that Q; is a closed (n—2)-
dimensional manifold in L,. Since Q is compact, it can be covered by
a finite subset of the neighborhoods defined in Lemma 4. This implies
that Q will have a finite number of components.

COROLLARY 1. Let Sy and S, be two compact convex bodies in L, whose
interiors have a nonempty iniersection. If B(S:)-B(S:) is contained in
the interior of the convex hull of Si\J.S,, then B(S:)-B(S:) is the union
of a finite number of disjoint closed (n—2)-dimensional manifolds.

Proor. The set S;\U.S; satisfies hypotheses H; (=1, 2, 3) of Theo-
rem 1.

Theorem 0 in the introduction can be obtained from Theorem 1 as
follows. For sets in Ls Theorem 1 implies readily that each component
Q1 of Q must be homeomorphic to the boundary of a circular two-cell.
Since K is a compact convex body (int K>0) in L; and since
O01CB(K), the Jordan curve theorem as applied to the two-dimen-
sional surface B(K) implies that Q; is a simple closed curve in L; (no
knots are possible).

4. Isolated points of local nonconvexity. In order to describe in a
topological linear space L what the existence of an isolated point of
local nonconvexity does to the totality of points of local nonconvexity
of S, the following definitions will be needed.

DEFINITION 6. A space L is locally starlike if for each neighborhood
U(p) of p there exists a neighborhood V(p), starshaped from p, such that
PEV(p) CU(p). A corresponding definition holds for a locally convex
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space L. The latter concept is not to be confused with that of Defini-
tion 2, and the usage below will clearly avoid any such confusion.

DEFINITION 7. The set SC L 1s strongly locally convex at a point pE S
if there exists a neighborhood N of p such that S-N is convex. A point
pES which is not a point of strong local convexity is called a point of
mild local nonconvexity.

In a topological linear space L which is locally convex in the sense
of Definition 6, Definitions 2 and 7 are equivalent. However, in
general they are not equivalent. For instance, each neighborhood in
a nonlocally convex topological linear space (in the sense of Defini-
tion 6) is locally convex in the sense of Definition 2 but not strongly
locally convex in the sense of Definition 7. The following theorem
establishes a significant difference between sets S (having property
P;) in Ly and in L, where dimension L>2.

THEOREM 2. Let S be a closed set in a topological linear space L,
where dimension L>2. Assume that S has property Ps, and that S is
not contained in any two-dimensional variety of L.

If the set Q of points of local nonconvexity of S has an isolated point,
then Q has at most two points (see Definitions 2 and 3).

PRroOF. Let p be an isolated point of Q. Since a topological linear
space is locally starlike [2;7], let N(p) be a neighborhood of p, star-
shaped from p, such that N(p)-Q=p. Since L is a topological linear
space, it is well known [2; 7] that there exists a neighborhood N:(p)
C N(p), starshaped from p, such that for any two points u & N.i(p),
vE Ny(p) we have uv CN(p). Since p is a point of local nonconvexity
of S, there exist points x;, y1 in S+ Ni(p) such that x1y; .S, and more-
over from the preceding sentence we have x1y1CN(p). Since x1y: S,
there exists a segment xy Cxiy: such that x&S, y&S, S-intv xy=0,
xy C N(p), even though xy may not belong to Ni(p). Since N(p) is
starshaped from p, and since xyCN(p), we have conv(x\Jy\Up)
CN(p). Since p&EL(x, »), let L(x, y, p) denote the variety determined
by x, ¥, p. We next prove that QCL(x, y, ). Suppose Qq L(x, y, p),
and choose ¢g€Q~L(x, y, p). Let L(x, y, p, ¢) denote the three-
dimensional variety determined by x, y, p, ¢. Since L(x, ¥, p, q) is
locally convex relative to the topology obtained by intersecting
neighborhoods of L by L(x, , p, ), there exists, relative to L(x, y, p, ¢),
a convex neighborhood V(p) CN(p) L(x, y, p, @), P& V(p). Since
N(p)-Q = p, and since conv(x\Jy\Up) C N(p), we have Q
.conv(x\Jy\Up) =p. Hence, by Remark B of §2 there exist points
aE V(p)-intv xp, bE V(p)-intv yp such that ab_S. Hence, a cross-
cut ¢d of the complement of S exists in V(p) -conv(x\Jy\Up). Choose
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a point r& V(p) -intv pq. Since pgC K, and since cE S, dES, S-intv ¢d
=0, Remark B of §2 implies that Q-conv(c\Jd\Ur)s#£0. Let ¢;:EQ
-conv(c\Jd\Ur). Since V(p) is convex, we have ¢EV(p) CN(p)
with gi17p. This contradicts the fact Q- N(p) =p. Hence, we have
shown that QCL(x, v, p).

Secondly, to prove that Q is contained in a line, choose a point
SES~L(x, v, p) since SCL(x, y, p). As in the preceding paragraph,
let V(p) be a three-dimensional convex neighborhood of p such that
V(p) CN(p)-L(x, v, p, s). Choose z& V(p)-intv sp. By Remark B,
just as in the preceding paragraph, there exist points a & V(p)
-intv xp, bE V(p) -intv yp such that abS. Since ab (S, property P3
implies that we may, without loss, assume azC.S. Since .S is closed,
and since ab{ S, there exists a point A& intv az such that b2 S. Since
conv(a\Jb\Jz) CV(p) CN(p), we have bh C N(p). Hence, since bh (S,
the reasoning that implies QC L(x, y, p) also implies QCL(b, k, p).
Since L(x, y, p)-L(b, k, p) =L(y, p), we have QCL(y, p).

Finally, to show that Q consists of at most two points, suppose
points ¢&Q, r&(Q exist with » between p and ¢ on L(p, g). Since
QCL(y, p), we have L(p, q) =L(y, p). Since K -intv yp =0, we have
pEintv yr. The set L(p, q)~intv pq is closed; hence, let N(r) be a
neighborhood of 7, starshaped from r, such that N(r)-(L(p, q)
~intv pg) =0. There exists a neighborhood Ni(r) of r such that
AN(r) + (1 =N)Ni(r) CN(r) (0SN=1) [7]. Since r&EQ, there exist
points # &S Ni(r), vES- Ni(r) such that uvS. However, uv CN(r),
so that uv- (L(p, q)~intv pg) =0. Moreover, since pgC K, and since
uww@ S, we have uv-pg=0, so that uv-L(p, ¢)=0. Hence, since
QCL(y, p), it is true that Q- conv(z\Jv\Jp)=p. Hence, the local
convexity (in the sense of Definition 6) of the variety L(u, v, ) in
the two-dimensional relative topology and Remark B imply the
existence of points #’"\Uy’'CS- N(p) such that »'\Uv' Cconv(u\Jv\Up)
and S-intv #'v’ =0, #'v’ C N(p). Hence, the exact sequence of reasons
that implies QC L(y, p) CL(x, ¥, ) also implies that QC L(«’, v/, p)
and that either QC L(«’, p) or QCL(?', p). Suppose that Q CL(u/, p).
Then since ' & L(y, p), we have QCL(y, p)-L(u’, p)=p. This is a
contradiction since ¢& Q. Hence, Q has at most two points.

It should be observed that Theorem 2 does not hold for closed sets
SCL, having Property P;. A closed two-cell whose boundary is the
conventional m-pointed star has property Pj, yet it has m isolated
points of local nonconvexity [6].

Theorem 2 and the remarks following Definition 7 imply the follow-
ing result.
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THEOREM 3. Let S be a closed set in a locally convex (in the sense of
Definition 6) topological linear space L, where dimension L>2. As-
sume that S has property P, and that S is not contained in any two-
dimensional variety of L.

If the set of points of mild local nonconvexity of S has an isolated
point, then S has at most two points of mild local nonconvexity.
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