
ON A THEOREM OF PUTNAM AND WINTNER

I. N. HERSTEIN

In a recent paper [l] Putnam and Wintner prove the following

theorem: Let a, b be nXn matrices over a field of characteristic 0 such

that a commutes with ab — ba; suppose further that a and b are regular,

then ab~la-lb — l is nilpotent. In this paper they also obtain the

analogous result for a, & in a Banach algebra provided that a has a

logarithm which commutes with it.

In their proof they make use of the exponentiation of a matrix.

We give here a proof for their result which is purely algebraic and

which holds true for matrices over any field provided the character-

istic of the field is large enough. We also point out that certain in-

formation can be obtained from our approach in the case of Banach

algebras.

We prove the

Theorem. Let a, b be regular nXn matrices over a field F of char-

acteristic p>n; suppose that a commutes with ab — ba. Then ab~la~xb — 1

is nilpotent.

Proof. In order to prove the theorem it is clearly sufficient to

show that 1 is the only characteristic root of ab~1a~1b.

So suppose that X is a characteristic root of ab~la~lb. Since a, b

are regular X^O. Thus ab~1a~1b —X fails to have an inverse. But then,

by multiplying through by ba-1 from the left, a~lb—\ba~l does not

have an inverse, that is, \(a~~lb — ba~l) +(1 — \)a~lb does not have

an inverse. Since a~1b—ba"1 = a-l(ba—ab)a~1 = a~2(ba — ab), by our

hypothesis, we now have that \a~2(ba — ab) +(1 — \)a~lb is singular.

Thus if we multiply this on the left by a2 the resulting element,

\(ba — ab)-\-(l — \)ab=\ba + (l — 2X)ab is also not invertible. Hence,

multiplying through by b^a'1 from the left, b~la~lba — ((2X — 1)/X)

fails to have an inverse. Consequently (2X—1)/X is a characteristic

root of b~xa~lba. Since b-1a~lba = a~1(ab-1a~1b)a, these matrices

have the same characteristic roots and so we have that (2X — 1)/X

is a characteristic root of ab~la~lb. Thus if X is a characteristic root of

ab_1a~lb then so is (2X —1)/X. Iterating this we have that for all

integers k, (k\ — (k — l))/((k — l)\—(k — 2)) is a characteristic root of

a&_1a_1&. Since ab~1a~lb has at most n roots, we have that for O^k

<k'^n,
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k\ -  (k -   1) k'\ -  (*' -   1)

(* - 1)X - (k-2)~ (k' - 1)X - (k' - 2)

the net result of which is (k — k')(\ — 1)2 = 0. Since 0Sk<k' ^n, and

the characteristic £ of F is larger than w, k-k'f^O(p) and so (X —l)2

= 0 results. Hence X = l and the theorem is proved.

We point out that the argument used above also works, up to a

point in a Banach algebra. The conclusion one can reach is that the

spectrum of aJ_1a-1ft is invariant under the transformation (2X — 1)/X.
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SOME ORTHOGONAL FUNCTIONS CONNECTED WITH
POLYNOMIAL IDENTITIES

J. B. ROBERTS

If P(x) is an arbitrary polynomial of sufficiently small degree then

there are various ways of choosing an integer N and coefficients Cj

such that

N

(i) z2cjP(x + j) = o
3=0

for all x. In each of [3; 4] such an identity is proved. The present

paper is devoted to a discussion of a connection between the co-

efficients in these identities and certain classes of orthonormal func-

tions.

1. A polynomial identity and the Walsh functions. In [4] we

proved the identity

(2) 22   i»vbln)P(x + n) = 0,

where b and k are positive integers, vb(n) is the sum of the coefficients
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