
ON A RESULT OF S. SHERMAN CONCERNING
DOUBLY STOCHASTIC MATRICES

shmuel schreiber

I. Doubly stochastic (d.s.) matrices are defined as nXn real

matrices P(pa) having non-negative entries and unit row—and col-

umns sums, thus:

Ti

(1)     pa ^ 0, 1 g i, j g »; (2)      22 Pa = 1, * ̂  * =£ «;
3-1

(3) £ fc, = 1, 1 ̂  i g *.
1=1

S. Sherman [l] introduces a partial ordering of d.s. matrices de-

fining, for two d.s. matrices Pi and P3 of the same order,

(4) Pi < P3

if, and only if, there exists a d.s. matrix P such that

(5) Pi = P2P3.

He also defines, following Hardy, Littlewood and Polya [3] a partial

ordering of w-dimensional real vectors: a<b if, and only if, there

exists a d.s. matrix P such that a = Pb. In the above named article,

the author investigates a conjecture of S. Kakutani to the effect

that, if two d.s. matrices are such that Pi& <P3a for every real vector

a, then Pi<P3. For this purpose he constructs a linear mapping of

all vectors of the form P3a onto vectors Pia, and extends this map-

ping to a mapping \p of the whole euclidean «-space onto the range of

Pi. However, A. Horn (as quoted in [2]) points out, with the aid of

a counter-example, that such an extension does not always preserve

the properties of a mapping effected by a d.s. matrix, and thus

Kakutani's conjecture is not true without restriction. On the other

hand, if every vector is of the form P3a, i.e. if the matrix P3 is regular,

it is readily verified that Sherman's construction has the required

properties and thus in this case, Kakutani's conjecture holds true.

It is the object of the present note to give an elementary proof of this

fact, as well as to derive a more or less intuitive description of Sher-

man's partial ordering of d.s. matrices.
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II. Let A denote the class of matrices satisfying (1), B the class

of matrices satisfying (2), C the class of matrices satisfying (3). Af~\B

is the class of stochastic matrices occurring in the theory of probabil-

ity (Markoff chains). Let e denote the column vector, all of whose

components are unity and f=eT the corresponding row vector. Then

PEB if, and only if Pe = e. From Pie = e and P2e = e we have

PiP2e = P2e = e. Moreover, if P is regular, then from Pe = e it follows

that e = P~1e. Thus

Lemma 1. Tke matrices of class B form a semigroup under multipli-

cation; the regular matrices of class B form a group.

Lemma 2. The matrices of class C form a semigroup under multipli-

cation; the regular matrices of class C form a group.

The intersection of the two groups above is obviously formed by

the regular matrices of BC\C. This group contains the semigroup of

all regular d.s. matrices.

Let now P be a matrix, v a column vector, and w = Pv. Then w

is a linear combination of the column vectors of P (the coefficient

being the components of v). If v has non-negative components with

unit sum, in which case we shall call v a stochastic vector, then w is

a convex linear combination of the column vectors of P. If moreover

P is regular, v is uniquely determined from the equation Pv = w;

in this case, if w is a convex linear combination of the column vectors

of P, v is a stochastic vector. This argument can be applied to each

column vector of the right-hand factor in the product of two matrices

and yields

Lemma 3. Let P and Q be matrices and R = PQ. Then each column of

R is a linear combination of the columns of P. If QEAC^C, each column

of R is a convex linear combination of the columns of P. If P is regular,

Q is uniquely determined from the equation R = PQ; in this case, if each

column of R is a convex linear combination of the columns of P, then

QEAr\C.

By a similar argument (or by setting RT = QTPT in Lemma 3) one

obtains

Lemma 4. Let P and Q be matrices and R = PQ. Then each row of R

is a linear combination of the rows of Q. If PEAC\B, each row of R is

a convex linear combination of the rows of Q. If Q is regular, P is

uniquely determined from the equation R = PQ; in this case, if each row

of R is a convex linear combination of the rows of Q, then PEAC\B.

In particular, for d.s. matrices, one has
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Lemma 5. Let P2 and P3 be d.s. matrices and Pi=P2P3. Then Pi

(by Lemma 2.3) is a d.s. matrix; each column of Pi is a convex linear

combination of the columns of P2 and each row of Px is a convex linear

combination of the rows of P3.

We now have the following

Proposition. Let Pi and P3 be d.s. matrices and let P3 be regular.

Then, for Px <P3, it is necessary and sufficient that each row vector of Pi

be a convex linear combination of the row vectors of P3.

Proof. Necessity follows from Lemma 5. P3 being regular, Pf1EC

by Lemma 2. Again by Lemma 2, the matrix P2 = PiP3~l belongs to

C. But P2 belongs to AC\B as well, by Lemma 4, thus P2 is a d.s.

matrix and the condition is sufficient. Observe next that if uk is the

&th column vector of the unit matrix U, a<uk if and only if a is

stochastic. Indeed, if P is any d.s. matrix, then Puk is the &th column

vector of P. We can now prove Kakutani's conjecture, with the re-

striction to regular matrices P.

Theorem (S. Sherman). Let Pi and P3 be d.s. matrices, and let P3

be regular. If Pia<P3a for every a, then Pi<P3.

Proof. Pf1 exists by hypothesis. Let vk denote the &th column

vector of Pf1. Then Pivk<P3vk = uk in the above notation, thus Pivk

is stochastic. Therefore the matrix P2 = PiP3l is of class AC\C. On

the other hand, by Lemma 1, P3lEB and PiPf1EB, therefore P2 is

a d.s. matrix satisfying Pi=P2P3, q.e.d.

III. Geometrically, things may be described as follows: Let ir be

the hyperplane in euclidean w-space given by T^Li Xt = l. Call the

n—1 dimensional simplex on ir, determined by the end points of the n

positive unit vectors, S. Then the row vectors of every matrix PEB

have their end points on ir, and if PEAC^B, those end points are

the vertices of a (possibly degenerate) simplex on 5. The same is

true of the column vectors of a matrix belonging to C or to AC\C,

respectively. If, apart from PEA(~\B, we have PEC as well, then

the row vectors of P add up to/(l, 1, • • • , 1). Therefore the centroid

of the simplex, whose vertices are the end points of the row vectors

ofad.s. matrix, coincideswiththecentroidof S, i.e. (l/n,l/n, ■ ■ -,1/n).

The same is true of the simplex corresponding to the column vectors.

Following a suggestion of Dr. S. N. Afriat, we may define the right

stochastic range of a matrix P to be the set of all vectors Pa, where a

is a stochastic column vector, and analogously the left stochastic

range. It is readily seen that the end points of all vectors from the
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left stochastic range of a matrix PEAC\B, and of the right stochastic

range of a matrix PEAC\C form the convex closure of the simplices

described above. It is seen, moreover, that if the (left or right)

stochastic range of a sequence of d.s. matrices, such as the powers of

a given d.s. matrix, converges to a single vector, that vector has to

be the one whose end point is the centroid. This fact has various

applications; see for instance Dvoretzky and Wolfowitz [4], Feller

[5, p. 327 etc.].

We observe now that the partial order relation (4)-(5) can be ex-

tended to simply stochastic matrices, of class AC\B. Then Lemma 4

gives:

Let R and Q be two stochastic matrices. Then there exists a sto-

chastic matrix P such that R = PQ if, and only if the simplex cor-

responding to the row vectors of R is contained in the one cor-

responding to the row vectors of Q; or, alternatively, if the left sto-

chastic range of R is contained in the left stochastic range of Q.

Thus, to the partial order relation, set up by S. Sherman in [l],

there corresponds a partial order relation by inclusion of simplices.

Now the above partial order relation is invariant under matrix

multiplication from the right. If Ri = R2Rs, then RiRi=R2R3Ri. In

the same way one could define a left invariant partial ordering of d.s.

matrices, putting Ri<R2 if, and only if, there exists a d.s. matrix R3

such that Ri = R2R3. Such a definition could then be extended to

matrices of class Af~\C; the partial order thus set up would correspond

to partial ordering by inclusion of simplices from end points of col-

umn vectors, or by inclusion of right stochastic ranges.

References

1. S. Sherman, On a conjecture concerning doubly stochastic matrices, Proc. Amer-

Math. Soc. vol. 3 (1952) pp. 511-513.

2. -, A correction to "On a conjecture concerning doubly stochastic matrices",

Proc. Amer. Math. Soc. vol. 5 (1954) pp. 998-999.

3. G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge, 1934.

4. A. Dvoretzky and J. Wolfowitz, Sums of random integers reduced modulo m.

Duke Math. J. vol. 18 (1951) pp. 501-507.

5. W. Feller, An introduction to probability theory and its applications, New York,

1950.

The Hebrew University, Jerusalem


