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1. Introduction. The ascertainment of conditions for topological

invariances under various types of mappings, especially where the

domain space is metric and the mappings are closed or quasi-compact,

has received a considerable amount of recent attention. Necessary

and sufficient conditions for the invariance of metrizability under

closed mappings have been obtained independently by K. Morita

and S. Hanai [l] and by A. H. Stone [2]. A similar type theorem for

quasi-compact mappings on locally compact, separable metric spaces

is given in the present paper. Previous results in this direction have

been obtained by A. V. Martin [3], W. E. Malbon [4] and Stone [2^

2. Definitions. Let/(X) = Y where X, Y are topological spaces and

/ is a continuous mapping. Then / is a quasi-compact mapping pro-

vided that the image of every open inverse set in X is open in Y.

The mapping / is a Pi mapping provided that whenever yEY and

U is a neighborhood of /_1(y) then yEintf(U); f is a P2 mapping

provided that for each y in Y there is a compact set CEf~l(y) such

that whenever U is a neighborhood of C then y£int/(£/). The map-

ping/ is semi-closed provided that whenever C is a compact subset of

X, then/(C) is closed. The space X is an M space provided that when-

ever (xi)—*x and (xi)—>x' in X, then x = x'.

3. Theorem. Let f be a quasi-compact mapping of a locally compact,

separable metric space X onto the topological space Y; then Y is a locally

compact, separable metric space if and only if f is a semi-closed, P2

mapping.

It will be convenient to prove several lemmas before establishing

this theorem. It may be observed from the definitions that every P2

mapping is a Pi mapping, and every Pi mapping is quasi-compact.

Throughout this paper, / will denote a continuous mapping of a

topological space X onto a topological space Y.
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Lemma 1. If f(X) = Y, then f is Px if and only if whenever yEA

-AEY, thenf-\y)Cl(f-KA))^.

Proof. Let f(X)= Y be Pi and suppose yEA—A where f~l(y)

■Cl(f~1(A))=0; then for each x in/-1(y) there is a neighborhood Ux

of x such that Uxf~l(A) =0. Let U= E^> summed over all x in

f~1(y)! then U is a neighborhood of f~1(y) and y is not interior to

f(U), giving a contradiction.

To prove the sufficiency, suppose yEY, U is a neighborhood of

/->(y), and y is not interior to f(U). If A = Y-f(U), then yEA-A
and f~x(y)■Cl(f^1 (A)) = 0; this gives a contradiction.

Lemma 2. Ae/ /(A) = F be a Pi, semi-closed mapping of a metric

space X onto Y; then Y is an M space.

Proof. Y is 7\ since/is semi-closed. Let (y%)^>y in Y; it must be

shown that if y'E Y—y then it is false that (yi)—>y'. By application

of Lemma 1 and the metrizability of X, it follows that there is a

sequence of points (x.) in /-1(E:y»—y—-y') and an x in f~l(y) such

that (x,)—>x. Then (E*»+x) is a compact set and hence f(22xi~f~x)

is a closed infinite subset of (Ey»+y~V) I therefore (yt)-^y' is false.

Lemma 3. Z-e/ /(-^O = Y be a P2, semi-closed mapping of a metric

space X onto Y; then Y is a Hausdorff space with a locally countable

basis.

Proof. Let yE Y and choose a compact set CC/_1(y) such that

if U is a neighborhood of C then yE'mtf(U). Let Sk(C) denote the

1/k neighborhood of C, and let Wk=intf(Sk), k = l, 2, • • ■ . If Wis
a neighborhood of y and p is a metric for A, then p(C, Frf~1(W))

>l/k for some positive integer k and hence WkEW. This proves

(Wk) is a basis at y; since Y is an Af space by Lemma 2, it follows

that Y is also Hausdorff [4,1.3].¥orif (W),(Wi),i=l,2, ■ ■ ■ were

respectively decreasing bases at points y and y' in Y not having dis-

joint neighborhoods, then by choosing yt in WvWl there results a

sequence (yi) such that (y,)—>y, (yi)—>y' and this gives a contradic-

tion.

The sufficiency of the P2 and semi-closed conditions in the theorem

now follows by Lemma 3 and a theorem proved by A. H. Stone [2;

Theorem 3] to the effect that a Hausdorff space with a locally

countable basis is a locally compact, separable metric space if it is

the image under a quasi-compact mapping of a locally compact,

separable metric space.

In regard to the necessity of the P2 and semi-closed conditions in

the theorem, it is evident that/ is semi-closed. Suppose/ is not a P2
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mapping. Then there is a yEY such that for each compact set

CEf~l(y) there is a neighborhood U of C such that y is not interior

to f(U). By application of local compactness and the Lindelof prop-

erty, there is a representation/_1(y) = 22t=i C*> where C* are compact

nonempty sets and Ck+iDCk. Choose Ui a conditionally compact

neighborhood of & such that y is not interior to f(Ui), and let Uk

be inductively defined as a conditionally compact neighborhood of

Ck+f~1(y)-Cl(Uk-i) such that y is not interior to f(Uk). Let Vk

= 22t-i Ui, k = l, 2, ■ ■ ■ ; it will now be shown that y is not interior

to f(Vk), k = l, 2, ■ ■ ■ . Suppose yEintf(Vk) for some k; then there

is a sequence (yi)-+y in Y where yi is in f(Vk)—f(Uk), i=l, 2, ■ • • .

If XiEf~l(yi) ■ Vk, the sequence (xi) has a limit point x in Cl(F*_i)

and f(x)=y by the continuity of /. Hence x£/_1(y) • Cl(F*_i)

=f~l(y) Cl(Uk-i)EUk, contradicting the fact that x is a limit point

of (xi) and x,- is not in Uk, i = 1, 2, • • • . This proves y is not interior

tof(Vk) for* = l, 2, • • • .

Since by Lemma 1, Theorem 3 of Stone [2, p. 694], y is interior

to /(Vk) for some &, there is a contradiction and therefore / is a P2

mapping.

The Pi and P2 properties of mappings are equivalent whenever all

point inverses are compact. Included among the Pi mappings are all

open and all closed mappings [4, pp. 43-45]. For if/is open then/

is clearly Pi; if/ is closed and U is a neighborhood of /_1(y) then

f(X-U) is closed and therefore yE'mt (Y-f(X-U))E'mtf(U).
Hence it is easily seen that all open mappings and all closed mappings

with compact point inverses are P2 mappings.

The following, a modification of an example due to Malbon [4,

Ex. 2.28], shows that X must be assumed locally compact in the

theorem. In the plane: for 0<x^l let Ax be the line segment x = x,

l^y^2 and px the point (x, 0); let q be the point (0, 1). Now let

X = 22iAx+px)+q for 0<x^l, with the usual topology of the plane,

be decomposed as follows. Elements are px and Ax for x = l/i,

i = l,2, • ■ • , px+Ax for x otherwise, and q. Let Y denote the induced

decomposition space and / the natural map. Then X is separable

metric, though not locally compact at q, and / is open, semi-closed,

and has compact point inverses. Therefore Y is Hausdorff with a

locally countable basis by Lemma 3. If P= 22i°= 1 Pvu then P is a

closed subset of Y and P and q do not have disjoint neighborhoods in

Y. Therefore Y is not regular and hence not separable metric.
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CONNECTED SETS OF VAN VLECK

PAUL M. SWINGLE

Both Vitali and Van Vleck have given interesting constructions of

Lebesgue nonmeasurable sets in euclidean Ex. Here we give a gen-

eralization for the construction of Van Vleck for Em, m^2; our inter-

est is in the type of connected set that can be so obtained. Elsewhere

we will consider the construction of Vitali. Of interest also is the inter-

lacing of these connected sets.

Below 12 is the first transfinite ordinal whose cardinal is the same as

that of the linear continuum: a, p\ y are ordinals, >0 and <fi. We

will say that the Van Vleck basic set for a given point Pa

= (xia, x2„, • • • , xma) in (xi, x2, ■ • • , xm)-coordinate space is the

set of all (x'ia, x'2a, • • • , x'ma) where for each j (j=l, 2, • • ■ , m), we

have as in [l, p. 240 ],

00 ' ti
(1) *',-„ = —- ± —       (u, v, p = 0, 1, 2, • • • ).

2(±p)       2"

Van Vleck constructs two complementary sets in Ei, each a reflection

about x = l/2 of the other; it is in part because measure is invariant

under reflection that his construction gives Lebesgue nonmeasurable

sets.

We will take the Van Vleck Xi-reflected set for Pa as the set of all

(—x[a, x'2a, ■ ■ ■ , x'ma) with x'ja as above, i.e. it is the Van Vleck basic

set for Pa reflected about Xi = 0; and the (xh, x„, • • • , x^-reflected

set for Pa is the Van Vleck basic set for Pa reflected about the co-

ordinate subspace where xa = 0, x„ = 0, • • • , xk = 0, i.e. the set of all

(x'i'a, x'2'a, • • • , x^'J, where x'ta= —x'ta for t = h, g, ■ ■ ■ , k and other-

wise x'ta = x'ta: these reflections include one about the origin, referred

to as the (m — w)-coordinate space below.
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