THE MEASURE OF THE SET OF ADMISSIBLE LATTICES

WOLFGANG SCHMIDT

Introduction. Let S be a Borel set in *n*-dimensional space which does not contain the origin 0. We assume that there is no X so that both $X \in S$ and $-X \in S$. We say a point lattice Λ is S-admissible, if there is no lattice point of Λ in S. We denote by A(S) the set of S-admissible lattices and by V = V(S) the measure of S.

The main result of this paper is

THEOREM 4. If

(1)
$$V \leq n-1 \quad and \quad n \geq 13$$

then

(2)
$$m(A(S)) = \int_{\Omega \Lambda_0 \in A(S); \Omega \in F} d\mu(\Omega) = e^{-\nu}(1-R),$$

where

(3)
$$|R| < 6(3/4)^{n/2}e^{4V} + V^{n-1}n^{-n+1}e^{V+n}$$
.

Here Ω denotes a linear transformation of determinant 1, F is a fundamental region with respect to the subgroup of unimodular transformations of determinant 1, and $\mu(\Omega)$ is the invariant measure on the space of linear transformations with determinant 1, defined by C. L. Siegel [5], normalized so that

(4)
$$\int_{F} d\mu(\Omega) = 1.$$

 Λ_0 denotes the lattice of points with integral coordinates.

Theorem 4 will be used to prove Theorem 5 which is an improvement of the *Minkowski-Hlawka* Theorem. We also prove two existence theorems which are in a certain sense converses of the *Minkowski-Hlawka* Theorem (Theorem 6 and Theorem 7).

The author is very indebted to the referee who pointed out some errors of the originally submitted paper and made useful suggestions. The originally stated Theorem 1 was wrong.

Presented to the Society, June 15, 1957; received by the editors November 23, 1956 and, in revised form, June 3, 1957 and October 31, 1957.

1. We define the lattice function

$$\alpha(\Lambda) = \begin{cases} 1, & \text{for } \Lambda \in A(S), \\ 0, & \text{for } \Lambda \in A(S), \end{cases}$$

and $\rho(\Lambda)$ to be the number of lattice points of Λ in S. The usual bound for $\alpha(\Lambda)$, used for the proof of the *Minkowski-Hlawka* Theorem, is

(5)
$$\alpha(\Lambda) \geq 1 - \rho(\Lambda).$$

In §1 we shall replace (5) by a better bound.

We define for $0 \leq j \leq k \leq n, k > 0$,

$$\rho_k^j(\Lambda)$$

to be the number of k-tuples (X_1, \dots, X_k) of different lattice points X_i of Λ with $X_1 \in S, \dots, X_k \in S$ and dim $(X_1, \dots, X_k) = j$. (Here the order is immaterial, that is, we count k points of a k-tuple (X_1, \dots, X_k) only once and not k! times.)

We further define $\tau_k(\Lambda)$ and $\pi_k(\Lambda)$ by

$$\tau_k(\Lambda) = \begin{cases} \binom{k}{\rho_k(\Lambda)}, \text{ if } k \text{ is even,} \\ \binom{k}{\rho_k(\Lambda) + \frac{k-1}{\rho_k}(\Lambda)}, \text{ if } k \text{ is odd} \end{cases}$$

and

$$\pi_k(\Lambda) = \begin{cases} \rho_k(\Lambda), \text{ if } k \text{ is odd,} \\ {}^k_{\rho_k(\Lambda)} + {}^{k-1}_{\rho_k}(\Lambda), \text{ if } k \text{ is even.} \end{cases}$$

Since $0 \notin S$, $\tau_1(\Lambda) = \rho_1^1(\Lambda) + \rho_1^0(\Lambda) = \rho_1^1(\Lambda) = \rho(\Lambda)$.

The purpose of this section is to prove

THEOREM 1.

(6)
$$1 + \sum_{k=1}^{g} (-1)^k \pi_k(\Lambda) \ge \alpha(\Lambda) \ge 1 + \sum_{k=1}^{h} (-1)^k \tau_k(\Lambda),$$

for any odd $h \leq n$ and any even $g \leq n$.

For example, we have for h=1 and h=3

$$\alpha(\Lambda) \geq 1 - \rho(\Lambda) \text{ and } \alpha(\Lambda) \geq 1 - \rho_1^1(\Lambda) + \rho_2^2(\Lambda) - \rho_3^3(\Lambda) - \rho_3^2(\Lambda),$$

respectively. For the proof of Theorem 1 we need some lemmas. We consider the numbers

$$A_m^h = \sum_{k=0}^h \binom{m}{k} (-1)^k \qquad (0 \le h \le m, m > 0).$$

Lemma 1.

$$A_m^h \leq 0, \text{ if } h \text{ is odd};$$
$$A_m^h \geq 0, \text{ if } h \text{ is even}.$$

PROOF OF LEMMA 1. We first assume h < m/2. Then we have

$$\binom{m}{r-1} \leq \binom{m}{r},$$

if $r \leq h$. Therefore, if h is odd, we see that

$$A_m^h = -\sum \begin{bmatrix} 1 \leq r \leq h \\ r \text{ odd} \end{bmatrix} \left\{ \binom{m}{r} - \binom{m}{r-1} \right\} \leq 0;$$

and, if h is even,

$$A_m^h = 1 + \sum \begin{bmatrix} 1 \leq r \leq h \\ r \text{ even} \end{bmatrix} \left\{ \begin{pmatrix} m \\ r \end{pmatrix} - \begin{pmatrix} m \\ r-1 \end{pmatrix} \right\} \ge 0.$$

If $m > h \ge m/2$, then m - (h+1) < m/2 and

$$A_{m}^{h} = \sum_{k=0}^{h} \binom{m}{k} (-1)^{k} = \sum_{k=0}^{m} \binom{m}{k} (-1)^{k} - \sum_{k=h+1}^{m} \binom{m}{k} (-1)^{k}$$
$$= 0 - \sum_{k=0}^{m-(h+1)} \binom{m}{k} (-1)^{m+k} = (-1)^{m+1} A_{m}^{m-(h+1)}.$$

Thus, if h is odd, we obtain the following:

If *m* is even, then $A_m^{m-(h+1)} \ge 0$, $(-1)^{m+1} = -1$, and so $A_m^h \le 0$; if *m* is odd, then $A_m^{m-(h+1)} \le 0$, $(-1)^{m+1} = 1$, and so $A_m^h \le 0$.

In a similar way we can prove that, if h is even, then $A_m^h \ge 0$. If m = h, $A_m^m = 0$.

LEMMA 2. Let $a_0, a_1, a_2, \dots, a_m$ be real non-negative numbers, for which

(7a)
$$1 = a_0 = a_1, \quad a_{2t} \ge a_{2t+2} \quad (0 \le 2t \le m-2)$$

and

(8a)
$$a_{2t} \leq a_{2t+1}$$
 $(0 \leq 2t \leq m-1)$

hold. Then we have

(9a)
$$\sum_{k=0}^{h} \binom{m}{k} (-1)^{k} a_{k}^{p} \leq 0,$$

if either h is odd and $h \leq m$, or if h = m.

But if b_0 , b_1 , b_2 , \cdots , b_m , are real non-negative numbers, for which

(7b)
$$1 = b_0 = b_1, \quad b_{2t-1} \ge b_{2t+1} \quad (2 \le 2t \le m-1)$$

and

$$(8b) b_{2t-1} \leq b_{2t} (2 \leq 2t \leq m)$$

hold, then

(9b)
$$\sum_{k=0}^{g} \binom{m}{k} (-1)^{k} b_{k} \geq 0,$$

if either g is even and $g \leq m$, or if g = m.

PROOF OF LEMMA 2. First we consider the case when (7a) and (8a) hold. We may assume that $a_{2t+1} = a_{2t}$. Then, using partial summation and Lemma 1, we have

$$\sum_{k=0}^{h} \binom{m}{k} (-1)^{k} a_{k} = \sum_{k=0}^{h} \left[\frac{1}{t} \leq \frac{t}{k} \leq h-1 \\ t \text{ odd} \right] (a_{t-1} - a_{t+1}) \sum_{k=0}^{t} \binom{m}{k} (-1)^{k}$$
$$+ a_{h} \sum_{k=0}^{h} \binom{m}{k} (-1)^{k}$$
$$\leq a_{h} \sum_{k=0}^{h} \binom{m}{k} (-1)^{k}.$$

Now the right side is less than or equal to 0, if h is odd, or if h=m. So (9a) is true. Similarly (7b) and (8b) imply (9b).

LEMMA 3. Let Λ be a lattice with $\rho(\Lambda) = m > 0$. We define numbers $a_0, a_1, a_2, \cdots, a_m$ and $b_0, b_1, b_2, \cdots, b_m$ by $a_0 = b_0 = 1$ and

(10)
$$au_k(\Lambda) = a_k\binom{m}{k}$$
 and $\pi_k(\Lambda) = b_k\binom{m}{k}$ $(1 \leq k \leq m).$

Now we assert the following: The a_k satisfy (7a) and (8a), the b_k satisfy (7b) and (8b).

PROOF OF LEMMA 3. We have

$$\tau_1(\Lambda) = m = a_1 \binom{m}{1} = a_1 m$$

and therefore $a_1 = 1$. Defining constants c_k by

$$\rho_k^k(\Lambda) = c_k\binom{m}{k}$$

1958]

we obtain

$$c_{k+1}\binom{m}{k+1} = \rho_{k+1}^{k+1}(\Lambda)$$

= { the number of $(k+1)$ -tuples (X_1, \dots, X_{k+1}) of lattice points of
 Λ with $X_1 \in S, \dots, X_{k+1} \in S$ of dimension $k+1$ }
 $\leq \rho_k^k(\Lambda) \frac{m-k}{k+1} = c_k\binom{m}{k} \frac{m-k}{k+1} = c_k\binom{m}{k+1}.$

The inequality holds because each (k+1)-tuple considered can be represented as the union of a k-tuple of linearly independent points of Λ in S and another point of Λ in S in k+1 ways. But there are $\rho_{k}^{k}(\Lambda)$ such k-tuples and a k-tuple given, there are m-k other points of Λ in S.

Dividing by

$$\binom{m}{k+1}$$
,

we obtain $c_{k+1} \leq c_k$. Since, for even k > 0, $a_k = c_k$, we have $a_{2t} \geq a_{2t+2}$ for t>0. Also $a_0=a_1=c_1 \ge c_2=a_2$. Hence the a_k satisfy (7a). If t>0, then

$$a_{2t+1}\binom{m}{2t+1} = \tau_{2t+1}(\Lambda) = \rho_{2t+1}^{2t+1}(\Lambda) + \rho_{2t+1}^{2t}(\Lambda)$$

= { the number of $(2t+1)$ -tuples (X_1, \dots, X_{2t+1}) of different lattice
points of Λ satisfying $X_1 \in S, \dots, X_{2t+1} \in S$ of dimension $\geq 2t$ }

$$\geq \rho_{2t}^{2t}(\Lambda) \ \frac{m-2t}{2t+1} = \tau_{2t}(\Lambda) \ \frac{m-2t}{2t+1} = a_{2t}\binom{m}{2t} \frac{m-2t}{2t+1} = a_{2t}\binom{m}{2t+1}.$$

Dividing by

$$\binom{m}{2t+1}$$

we obtain $a_{2t+1} \ge a_{2t}$ and (8a).

If, in the above proof we replace a_k by b_k , τ_k by π_k , even by odd, and in places 2t+1 by 2t, then we obtain (7b) and (8b).

PROOF OF THEOREM 1. Again let Λ be a lattice with $\rho(\Lambda) = m > 0$. Let the numbers a_k and b_k be defined by (10). Then the a_k satisfy (7a) and (8a), the b_k satisfy (7b) and (8b). If therefore h is odd, $h \leq n, h \leq m$, we have

$$1 + \sum_{k=1}^{h} (-1)^{k} \tau_{k}(\Lambda) = \sum_{k=0}^{h} (-1)^{k} \binom{m}{k} a_{k} \leq 0 = \alpha(\Lambda),$$

by Lemma 2. But if $h \leq n$, $h \geq m$, we obtain the same result:

$$1+\sum_{k=1}^{k} (-1)^{k} \tau_{k}(\Lambda) = \sum_{k=0}^{m} (-1)^{k} \binom{m}{k} a_{k} \leq 0 = \alpha(\Lambda).$$

In case g is even, $g \leq n$, $g \leq m$, we have

$$1 + \sum_{k=1}^{g} (-1)^{k} \pi_{k}(\Lambda) = \sum_{k=0}^{g} (-1)^{k} \binom{m}{k} b_{k} \ge 0 = \alpha(\Lambda);$$

and for $g \leq n, g \geq m$

$$1 + \sum_{k=1}^{q} (-1)^{k} \pi_{k}(\Lambda) = \sum_{k=0}^{m} (-1)^{k} \binom{m}{k} b_{k} \ge 0 = \alpha(\Lambda).$$

Therefore Theorem 1 is true if $\rho(\Lambda) > 0$. It is evidently true if $\rho(\Lambda) = 0$.

2. We now calculate the integrals of $\rho_k^k(\Lambda)$ and $\rho_k^{k-1}(\Lambda)$ over the space of lattices with determinant 1.

THEOREM 2. Suppose k < n. Then $\rho_k^k(\Lambda)$ is Borel-measurable in the space of lattices of determinant 1 and

(11)
$$R_k^k = \int_F \rho_k^k(\Omega \Lambda_0) d\mu(\Omega) = \frac{1}{k!} V^k.$$

PROOF OF THEOREM 2. First, by the definition of $\rho_k^j(\Lambda)$, we see

(12)
$$\rho_k^j(\Lambda) = \frac{1}{k!} \sum \begin{bmatrix} X_1 \in \Lambda, \cdots, X_k \in \Lambda \\ \dim(X_1, \cdots, X_k) = j \\ X_i \neq X_h, \text{ if } i \neq h \end{bmatrix} \rho(X_1) \cdots \rho(X_k),$$

where $\rho(X)$ is the characteristic function of S.

On the other hand, we observe the following theorem, stated by C. L. Siegel [5] and proved by C. A. Rogers¹ [2]: If

$$\psi(\Lambda) = \sum \begin{bmatrix} X_1 \in \Lambda, \cdots, X_k \in \Lambda \\ \dim (X_1, \cdots, X_k) = k \end{bmatrix} \rho(X_1) \cdots \rho(X_k),$$

then

$$\int_{F} \psi(\Omega \Lambda_{0}) d\mu(\Omega)$$

¹ C. A. Rogers [2], Theorem 3, take h=0.

1958]

exists and is equal to

$$\int \cdots \int \rho(X_1) \cdots \rho(X_k) dX_1 \cdots dX_k.$$

Theorem 2 is an immediate consequence of these two results.

THEOREM 3. Suppose k < n. Then $\rho_{k}^{k-1}(\Lambda)$ is Borel measurable in the space of lattices with determinant 1, and

$$R_{k}^{k-1} = \int_{F} \rho_{k}^{k-1} (\Omega \Lambda_{0}) d\mu(\Omega)$$
(13)
$$= \frac{1}{k!} \sum_{l=1}^{k} \sum_{q=1}^{\infty} \sum_{D} \frac{1}{q^{n}} \int \cdots \int \rho(X_{1}) \cdots$$

$$\rho(X_{k-1}) \rho\left(\sum_{i=1}^{k-1} \frac{d_{i}}{q} X_{i}\right) dX_{1} \cdots dX_{k-1}.$$

Moreover,

(14)
$$R_k^{k-1} \leq \frac{V^{k-1}}{(k-1)!} \left[3^k (3/4)^{n/2} + 5^k 2^{-n} \right].$$

The sum in (13) is over all integral vectors $D = (d_1, \dots, d_{k-1})$, which have highest common factor relative prime to q, and which obey $|d_j| < q$ for j < l and $|d_j| \leq q$ for $j \geq l$. Further, if q = 1, D is not $(0, 0, \dots, 0)$ nor of the form $(0, \dots, 0, 1, 0, \dots, 0)$.

Before we can give a proof of Theorem 3 we need some lemmas.

Lemma 4.

$$\sum \begin{bmatrix} X_1 \in \Lambda, \dots, X_k \in \Lambda \\ \dim (X_1, \dots, X_k) = k - 1 \\ X_i \neq X_j \text{ if } i \neq j \end{bmatrix} \rho(X_1) \cdots \rho(X_k)$$

$$(15) = \sum_{l=1}^k \sum_{q=1}^\infty \sum_D \sum \begin{bmatrix} Y_1 \in \Lambda, \dots, Y_{k-1} \in \Lambda \\ \dim (Y_1, \dots, Y_{k-1}) = k - 1 \\ \sum_{i=1}^{k-1} d_i/q Y_i \in \Lambda \end{bmatrix} \rho(Y_1) \cdots$$

$$\rho(Y_{k-1})\rho\left(\sum_{i=1}^{k-1} \frac{d_i}{q} Y_i\right),$$

where the sum on the right hand side is to be taken over the same set of vectors D as in Theorem 3.

396

PROOF OF LEMMA 4. If X_1, \dots, X_k is in the sum of the left hand side of (15), then dim $(X_1, \dots, X_k) = k-1$. Hence, the vectors X_1, \dots, X_k span a(k-1)-dimensional space. In this space we construct a system of orthogonal unit vectors e_1, e_2, \dots, e_{k-1} . We write X_j in the form

$$X_j = \sum_{i=1}^{k-1} a_{ij} e_i \qquad (1 \leq j \leq k).$$

We define A_j $(1 \le j \le k)$ to be the determinant

$$\begin{vmatrix} a_{1\ 1} \cdot \cdot \cdot a_{1\ j-1} & a_{1\ j+1} \cdot \cdot \cdot a_{1\ k} \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ a_{k-1\ 1} \cdot \cdot \cdot a_{k-1\ j-1} & a_{k-1\ j+1} \cdot \cdot \cdot a_{k-1\ k} \end{vmatrix}$$

There exists a unique l, such that

$$|A_j| < |A_l|$$
, if $j < l$, and $|A_j| \leq |A_l|$, if $j \geq l$.

This k-tuple (X_1, \dots, X_k) corresponds to the (k-1)-tuple (Y_1, \dots, Y_{k-1}) , defined by

$$Y_{1} = X_{1}, \cdots, Y_{l-1} = X_{l-1},$$

$$Y_{l} = X_{l+1}, \cdots, Y_{k-1} = X_{k},$$

and to the number l, to the vector $D = (d_1, \cdots, d_{k-1})$ and q, uniquely determined by

$$X_l = \sum_{i=1}^{k-1} \frac{d_i}{q} Y_i$$

and

g.c.d.
$$(d_1, \cdots, d_{k-1}, q) = 1$$
.

Because of our choice of l to make $|A_l|$ maximal we have

$$\left| d_{t} \right| < q$$
, if $t < l$, and $\left| d_{t} \right| \leq q$, if $t \geq l$.

If q = 1, then $D(d_1, \dots, d_{k-1})$ is not of the form $(0, 0, \dots, 0)$ or $(0, \dots, 0, 1, 0, \dots, 0)$.

Since l, d, q, Y_j do not depend on any particular choice of the unit vectors e_1, \dots, e_{k-1} , there corresponds to each term on the left side of (15) exactly one term on the right hand side. If, conversely, there are l, D, q, Y_j on the right side of (15), then we take the correspondence

$$X_{1} = Y_{1}, \cdots, X_{l-1} = Y_{l-1}, \qquad X_{l} = \sum_{i=1}^{k-1} \frac{d_{i}}{q} Y_{i},$$
$$X_{l+1} = Y_{l}, \cdots, X_{k} = Y_{k-1}.$$

These two mappings are one-one and inverse to each other. This proves the lemma.

LEMMA 5 (C. A. ROGERS). Let $\rho(X_1, \dots, X_m)$ be a Borel measurable function which is integrable in the Lebesgue sense over the whole (X_1, \dots, X_m) -space. Let q be a positive integer and $D = (d_1, \dots, d_m)$ be an integral vector with highest common factor relatively prime to q. Then the lattice function

(16)
$$\omega(\Lambda) = \sum \begin{bmatrix} X_1 \in \Lambda, \dots, X_m \in \Lambda \\ \dim (X_1, \dots, X_m) = m \\ \sum_{i=1}^m d_i/q, X_i \in \Lambda \end{bmatrix} \rho(X_1, \dots, X_m)$$

is Borel measurable in the space of lattices of determinant 1, and

(17)
$$\int_{F} \omega(\Omega \Lambda_{0}) d\mu(\Omega) = \frac{1}{q^{n}} \int \cdots \int \rho(X_{1}, \cdots, X_{m}) dX_{1} \cdots dX_{m}.$$

PROOF OF LEMMA 5. Lemma 5 is essentially the case h = 1 of Theorem 3 of C. A. Rogers [2]. The only difference is that we write 1/q instead of e_1/q as in *Rogers*, where $e_1 = \text{g.c.d.}$ (ϵ_1, q) and ϵ_1 is the elementary divisor of the matrix D. But since g.c.d. $(d_1, \dots, d_m, q) = 1$, we have $e_1 = \text{g.c.d.}$ (ϵ_1, q) = 1.

LEMMA 6 (C. A. ROGERS). If $\rho(X)$ is a characteristic function, then

(18)
$$\int \int \rho(X)\rho(Y)\rho(X+Y+a)dXdY \leq 2(3/4)^{n/2} \left(\int \rho(X)dX\right)^2.$$

PROOF OF LEMMA 6. See C. A. Rogers [3, Lemma 5].

PROOF OF THEOREM 3. (13) is a straightforward consequence of (12), Lemma 4 and Lemma 5 (take m = k - 1). Therefore only (14) remains to be proved. (14) implies that both sides of (13) are finite. We evidently have

(19)
$$R_{k}^{k-1} \leq \frac{1}{k!} k \sum_{q=1}^{\infty} \sum_{D} \frac{1}{q^{n}} \int \cdots \int \rho(X_{1}) \cdots \rho(X_{k-1}) \rho\left(\sum_{i=1}^{k-1} \frac{d_{i}}{q} X_{i}\right) dX_{1} \cdots dX_{k-1},$$

but now the summation is to be taken over all integral D with highest common factor relatively prime to q and $|d_j| \leq q$. If q=1, then $D \neq (0, 0, \dots, 0)$ and $\neq (0, \dots, 0, 1, 0, \dots, 0)$.

In (19) we mean that the inequality holds, if the right hand side is finite. We estimate the sum on the right hand side. We derive upper bounds (A) for the terms with q=1 and (B) for terms with q>1.

(A) There are $\leq 3^{k-1}$ possibilities for *D*. *D* either has two elements d_i , d_j , both different from zero, or *D* is the form $(0, \dots, 0, -1, 0, \dots, 0)$. In the first case we have, by Lemma 6,

$$\int \cdots \int \rho(X_1) \cdots \rho(X_{k-1}) \rho(\pm X_{i_1} \pm X_{i_2} \pm \cdots) dX_1 \cdots dX_{k-1}$$
$$\leq 2(3/4)^{n/2} \left(\int \rho(X) dX \right)^{k-1} = 2(3/4)^{n/2} V^{k-1}.$$

If D is of the form $(0, \dots, 0, -1, 0, \dots, 0)$, then

$$\int \cdots \int \rho(X_1) \cdots \rho(X_{k-1})\rho(-X_i)dX_1 \cdots dX_{k-1} = 0.$$

Thus

(20)
$$\sum_{D} \frac{1}{1^{n}} \int \cdots \int \rho(X_{1}) \cdots \rho(X_{k-1}) \rho\left(\sum_{i=1}^{k-1} \frac{d_{i}}{q} X_{i}\right) dX_{1} \cdots dX_{k-1}$$

 $\leq [3^{k}(3/4)^{n/2}] V^{k-1}$

(B) For a fixed q > 1 the number of vectors D is at most $(2q+1)^{k-1} \leq (5/2)^{k-1}q^{k-1}$. Consequently,

$$\sum_{q=2}^{\infty} \sum_{D} \frac{1}{q^{n}} \int \cdots \int \rho(X_{1}) \cdots \rho(X_{k-1}) \rho\left(\sum_{i=1}^{k-1} \frac{d_{i}}{q} X_{i}\right) dX_{1} \cdots dX_{k-1}$$

$$(21) \qquad \leq (5/2)^{k-1} \sum_{q=2}^{\infty} q^{k-1-n} V^{k-1} \leq (5/2)^{k-1} 2^{k+1-n} \sum_{q=2}^{\infty} \frac{1}{q^{2}} V^{k-1}$$

$$< (5/2)^{k-1} 2^{k+1-n} V^{k-1} < 5^{k} 2^{-n} V^{k-1}.$$

By (19), (20) and (21) we get the upper bound

(14)
$$R_k^{k-1} \leq \frac{1}{(k-1)!} \left[3^k (3/4)^{n/2} + 5^k 2^{-n} \right] V^{k-1}.$$

3. Proof of Theorem 4. Assume that (1) is satisfied. If h is odd and h < n, we infer from Theorem 1 that

$$\begin{split} \int_{F} \alpha(\Omega \Lambda_{0}) d\mu(\Omega) &\geq 1 + \sum_{k=1}^{h} (-1)^{k} \int_{F} \tau_{k}(\Omega \Lambda_{0}) d\mu(\Omega) \\ &\geq 1 + \sum_{k=1}^{h} (-1)^{k} R_{k}^{k} - \sum_{k=2}^{h} R_{k}^{k-1} \\ &\geq 1 + \sum_{k=1}^{h} (-1)^{k} \frac{V^{k}}{k!} - \sum_{k=2}^{h} \left[3^{k} (3/4)^{n/2} + 5^{k} 2^{-n} \right] \frac{V^{k-1}}{(k-1)!}. \end{split}$$

Using the Taylor expansion of $e^{-\nu}$ with a remainder after h+1 terms, we see that this implies that

$$\begin{split} \int_{F} \alpha(\Omega \Lambda_{0}) d\mu(\Omega) \\ & \geq e^{-V} - \sum_{k=2}^{h} \left[3^{k} (3/4)^{n/2} + 5^{k} 2^{-n} \right] \frac{V^{k-1}}{(k-1)!} - \frac{V^{h+1}}{(h+1)!} \, . \end{split}$$

If g is even and g < n, we obtain, in a similar way

$$\int_{F} \alpha(\Omega \Lambda_{0}) d\mu(\Omega) \leq e^{-V} + \sum_{k=2}^{q} \left[3^{k} (3/4)^{n/2} + 5^{k} 2^{-n} \right] \frac{V^{k-1}}{(k-1)!} + \frac{V^{q+1}}{(q+1)!}$$

A combination of both these inequalities gives

(2)
$$m(A(S)) = \int_{F} \alpha(\Omega \Lambda_{0}) d\mu(\Omega) = e^{-V}(1-R),$$

and

(22)
$$= e^{V} \left[\sum_{k=2}^{q} \left[3^{k} (3/4)^{n/2} + 5^{k} 2^{-n} \right] \frac{V^{k-1}}{(k-1)!} + \frac{V^{q+1}}{(q+1)!} \right] \leq R$$
$$\leq e^{V} \left[\sum_{k=2}^{h} \left[3^{k} (3/4)^{n/2} + 5^{k} 2^{-n} \right] \frac{V^{k-1}}{(k-1)!} + \frac{V^{h+1}}{(h+1)!} \right].$$

But, provided $1 \leq k \leq n$, we have

(23)
$$5^{k}2^{-n} = 3^{k}(5/3)^{k}2^{-n} < 3^{k}(5/6)^{n} < 3^{k}(3/4)^{n/2}.$$

 \mathbf{So}

(24)
$$\sum_{k=2}^{h} \left[3^{k} (3/4)^{n/2} + 5^{k} 2^{-n} \right] \frac{V^{k-1}}{(k-1)!} e^{V} < 6(3/4)^{n/2} \sum_{k=2}^{h} \frac{3^{k-1} V^{k-1}}{(k-1)!} e^{V} < 6(3/4)^{n/2} e^{4V}.$$

Now take h to be odd and to have either the value n-1 or the value n-2. Then as V < n-1 we have

$$\frac{V^{h+1}}{(h+1)!} e^{V} \leq \frac{V^{n-1}}{(n-1)!} e^{V}.$$

Since

$$e^n > n^{n-1}/(n-1)!,$$

it follows that

(25)
$$\frac{V^{h+1}}{(h+1)!}e^{V} < V^{n-1}n^{-n+1}e^{V+n}.$$

Using (24) and (25) in (22) we obtain

 $R < 6(3/4)^{n/2}e^{4V} + V^{n-1}n^{-n+1}e^{V+n}.$

A similar argument shows that

$$R > - 6(3/4)^{n/2}e^{4V} - V^{n-1}n^{-n+1}e^{V+n}.$$

A combination of these inequalities gives (3) and proves Theorem 4.

THEOREM 5 (IMPROVEMENT OF THE MINKOWSKI-HLAWKA THEO-REM). Let S be a Borel set, not containing the origin 0. Suppose

(26)
$$V \leq \frac{1}{8} n \log 4/3 - \frac{1}{2} \log 3.$$

Then there exists an admissible lattice Λ with determinant 1.

In the original Minkowski-Hlawka Theorem there is V < 1 instead of (26). It was first proved by E. Hlawka [1]. In the meantime it was proved to be true for $V < 2/(1+2^{1-n})(1+3^{1-n})$ by the author [4] and for $V \le n^{1/2}/6$ if *n* is sufficiently large by C. A. Rogers [3].

PROOF OF THEOREM 5. We may assume that $X \in S$ implies $-X \notin S$. We may also assume $n \ge 13$, because if n < 13, then (26) yields V < 1, and the theorem is true. (26) implies (1). Hence (2) and (3) hold. (26) also implies

$$6(3/4)^{n/2}e^{4V} \leq 2/3.$$

Further, as $\log 4/3 < 1/3$, we have V < n/24. Also $e^{25/24} < 24/23$. Thus

$$V^{n-1}n^{-n+1}e^{V+n} < (1/24)^{n-1}e^{25n/24}$$

< 24(24)⁻ⁿ(24/23)
= 24(23)^{-n} < 1/3.

Combining these we obtain |R| < 1, so that m(A(S)) > 0. Consequently, there exists an admissible lattice of determinant 1.

THEOREM 6. Let S, T be two Borel sets. Assume that $X \in T$ yields $-X \notin S \cup T$ and that $0 \notin S$. Further assume

(27)
$$V(S) \leq \frac{1}{16} n \log \frac{4}{3} - \frac{1}{2} \log 3 - \frac{4}{3} \sqrt{4}^{n/2},$$
$$V(S \cup T) \geq V(S) + \frac{4}{3} \sqrt{4}^{n/4}.$$

Then there exists a lattice Λ with determinant 1 which is S-admissible, but not T-admissible.

PROOF OF THEOREM 6. We may assume that $X \in S$ yields $-X \notin S$. Then never both $X \in S \cup T$ and $-X \in S \cup T$. We introduce $S_1 = S$, $S_2 = S \cup T$. We may assume that equality holds in the second equation (27), that is,

$$V(S_2) = V(S_1) + 4(3/4)^{n/4}$$
.

Then

$$V(S_i) \leq \frac{1}{16} n \log 4/3 - \frac{1}{2} \log 3.$$

Writing $\alpha_j(\Lambda) = \alpha_{S_j}(\Lambda)$, $V_j = V(S_j)$, $R_j = R(S_j)$, $c = (3/4)^{n/4}$, and applying Theorem 4 we infer

$$\int_{F} \alpha_{i}(\Omega \Lambda_{0}) d\mu(\Omega) = e^{-V_{i}}(1 - R_{i}),$$

where

$$|R_i| \leq \frac{2}{3} (3/4)^{n/4} + 24(23)^{-n} \leq (3/4)^{n/4} = c < \frac{1}{2}$$

Hence

$$\begin{split} \int_{F} & \left[\alpha_{1}(\Omega \Lambda_{0}) - \alpha_{2}(\Omega \Lambda_{0}) \right] d\mu(\Omega) = e^{-V_{1}}(1 - R_{1}) - e^{-V_{2}}(1 - R_{2}) \\ & = e^{-V_{2}} \left[e^{V_{2} - V_{1}}(1 - R_{1}) - (1 - R_{2}) \right] \ge e^{-V_{2}} \left[e^{4c}(1 - c) - (1 + c) \right] \\ & > e^{-V_{2}} \left[(1 + 4c)(1 - c) - (1 + c) \right] = e^{-V_{2}}(2c - 4c^{2}) > 0. \end{split}$$

Consequently, there exists a lattice Λ satisfying $\alpha_1(\Lambda) - \alpha_2(\Lambda) > 0$. This implies $\alpha_1(\Lambda) = 1$, $\alpha_2(\Lambda) = 0$. Therefore there is a point of Λ in $S_2 = S \cup T$, but no point of Λ in $S_1 = S$. Thus Λ is S-admissible, but not *T*-admissible. THEOREM 7. Let S_1, \dots, S_m be m Borel sets in R_n , $n \ge 13$, each so that $X \in S$ yields $-X \notin S$ and with

(28)
$$\sum_{j=1}^{m} e^{-W_j} [1 + R(n, V_j)] \leq 1,$$

where $W_j = \min(V_j, n-1)$ and $R(n, V) = 6(3/4)^{n/2}e^{4V} + V^{n-1}n^{-n+1}e^{V+n}$. Then there exists a lattice with determinant 1 which has at least one point in each S_j .

PROOF OF THEOREM 7. Clearly it is enough to prove the theorem if $V_j \leq n-1$. We obtain

$$\int_{F} \left[\sum_{j=1}^{m} \alpha_{j}(\Omega \Lambda_{0}) \right] d\mu(\Omega) < \sum_{j=1}^{m} e^{-V_{j}} \left[1 + R(n, V_{j}) \right] \leq 1.$$

Consequently, there exists a lattice Λ such that $\sum_{j=1}^{m} \alpha_j(\Lambda) = 0$ and Λ is not admissible for any S_j .

References

1. E. Hlawka, Zur Geometrie der Zahlen, Math. Zeit. vol. 49 (1944) pp. 285-312.

2. C. A. Rogers, Mean values over the space of lattices, Acta Math. vol. 94 (1955) pp. 249-287.

3. ——, The number of lattice points in a set, Proc. London Math. Soc. vol. 22 (1956) pp. 305-320.

4. W. Schmidt, *Eine Verschärfung des Satzes von Minkowski-Hlawka*. Monatshefte für Mathematik vol. 60 (1956) pp. 110–113.

5. C. L. Siegel, A mean value theorem in geometry of numbers, Ann. of Math. vol. 46 (1945) pp. 340-347.

MONTANA STATE UNIVERSITY