
THE MEASURE OF THE SET OF ADMISSIBLE LATTICES

WOLFGANG SCHMIDT

Introduction. Let .S be a Borel set in w-dimensional space which

does not contain the origin 0. We assume that there is no X so that

both XG-S1 and — XGS. We say a point lattice A is 5-admissible, if

there is no lattice point of A in 5. We denote by A (S) the set of 5-

admissible lattices and by V= V(S) the measure of 5.

The main result of this paper is

Theorem 4. If

(1) V g n - 1    and   n ^ 13,

then

(2) m(A(S)) =   f dn(ti) = e-r(l - R),
J OA06^(S);S16F

where

(3) | R |   < 6(3/4)"'2e4r + Vn~1n-n+1er+n.

Here Q denotes a linear transformation of determinant 1, F is a

fundamental region with respect to the subgroup of unimodular trans-

formations of determinant 1, and /x(^) is the invariant measure on

the space of linear transformations with determinant 1, defined by

C. L. Siegel [5], normalized so that

(4) fdM(fi) = l.

A0 denotes the lattice of points with integral coordinates.

Theorem 4 will be used to prove Theorem 5 which is an improve-

ment of the Minkowski-Hlawka Theorem. We also prove two existence

theorems which are in a certain sense converses of the Minkowski-

Hlawka Theorem (Theorem 6 and Theorem 7).

The author is very indebted to the referee who pointed out some

errors of the originally submitted paper and made useful suggestions.

The originally stated Theorem 1 was wrong.
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1. We define the lattice function

(\,   for    A EA{S),
a(A) =  <

lO,   for   A £ A(S),

and p(A) to be the number of lattice points of A in S. The usual bound

for a(A), used for the proof of the Minkowski-Hlawka Theorem, is

(5) a(A) ^ 1 - p(A).

In §1 we shall replace (5) by a better bound.

We define for O^j^k^n, k>0,

P*(A)

to be the number of ^-tuples (Xi, ■ • • , Xk) of different lattice points

Xi of A with XiES, ■ ■ ■ , XkES and dim (Xu • ■ • , Xk) =j. (Here
the order is immaterial, that is, we count k points of a £-tuple

(Xi, ■ ■ ■ , Xk) only once and not k\ times.)

We further define r*(A) and ir*(A) by

k
jp*(A), if k is even,

r*(A) =   <   i k-i
lp*(A) + pk (A), if k is odd,

and

(p*(A), if k is odd,
t*(A) =■<*.. *-i.  .   ., , .

lp*(A) + pk   (A), if * is even.

Since 0£5, n(A) =PJ(A) +p°(A) =p}(A) =p(A).
The purpose of this section is to prove

Theorem 1.

(6) 1 + Z (-l)Vt(A) ^ o(A) ^ 1 + £ (-1)*t*(A),
*-i *=i

for any odd h^n and any even g^n.

For example, we have for h=l and h = 3

«(A) ^ 1 - p(A)    and    a(A) ^ 1 - P1(A) + p22(A) - p',(A) -p!(A),

respectively. For the proof of Theorem 1 we need some lemmas. We

consider the numbers

Am=T>[     )(-!)*       (0^h^m,m> 0).



392 WOLFGANG SCHMIDT [June

Lemma 1.

h

Am ̂  0, if h is odd;

Am ̂  0, if h is even.

Proof of Lemma 1. We first assume h<m/2. Then we have

(m   \      / m\

r-l)*(,)"

if r^h. Therefore, if h is odd, we see that

*--sr*-TO-C:,)}"
and, if h is even,

^-x + z\1S,SK\l( m)-(m)\io.
_   r even   J(\f/      \r — \/)

If m>h^m/2, then m — {h-\-\) <m/2 and

/-E(f)(-')'-t(")(-.)'- £(?)(-»'
Jfc=0 \ « / fc=0 \ K / t_/i+l   \ « /

*=0        \ & /

Thus, if /j is odd, we obtain the following:

If wis even, then AZ~*+1) ̂ 0, (-l)m+1=-1, and so^^O;

if wis odd, then^™-(,,+1,^0, (-1)»+1 = 1, and so ^g0.

In a similar way we can prove that, if h is even, then Amiz0. If

m = h, AZ = 0.

Lemma 2. Let a0, a\, a2, ■ • ■ , am be real non-negative numbers, for

which

(7a) 1 = oo = a\,        ait ^ ""2<+2       (0 g 2/ ^ « - 2)

and

(8a) an ^ 02<+i (0 S 21 g m - 1)

/?o/d. 77w» we /fcroe

*'/:mV "*~>
(9a) £( L.)(-1)V^[0,
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if either h is odd and h^m, or if h = m.
But if ba, 0i, 02, • • • , bm, are real non-negative numbers, for which

(7b) 1 = oo = 0i,       02(-i S &2H-1       (2 g 2/ g to - 1)

and

(8b) 02(-i ^ 02* (2 < 2/g m)

(%) Z( t )(-!)*** SO,
it=o \ R /

j/ either g is even and g^m, or if g = m.

Proof of Lemma 2. First we consider the case when (7a) and (8a)

hold. We may assume that 02<+i = 02<. Then, using partial summation

and Lemma 1, we have

£(>y-m>-H ,«* ]<---',?.(,)<-»•

+ «»£(",)(-i)'

*«*E( J(-i)*-
t-o\ « /

Now the right side is less than or equal to 0, if h is odd, or if h~m.

So (9a) is true. Similarly (7b) and (8b) imply (9b).

Lemma 3. Let A be a lattice with p(A) =m>0. We define numbers

oo, oi, o2, ■ • • , om and o0, 0i, o2, • • • , om oy ao = 0o = 1 owd

(10) r*(A) = ad     J    and    *»(A) = bj     J (1 ̂  £ ^ m).

A^ow we awe?-/ the following: The a* satisfy (7a) awd (8a), /Ae o* satisfy

(7b) and (8b).

Proof of Lemma 3. We have

ti(A) = m = aA      1 = atf»

and therefore aj = l. Defining constants cft by

p*(A) = c\J
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we obtain

*"G+i)"*"(a)
= {the number of (k + l)-tuples (Xi} ■ ■ ■ , Xt+i) of lattice points of

A with Xi G S, ■ ■ • , Xk+i G >!> of dimension k + l}

k      m — k / m\ m — k /   m   \
^ Pt(A)- = cA      )-= ck( ).

k+ 1 \A/ *+ 1 \A+ 1/

The inequality holds because each (£ + 1) -tuple considered can be

represented as the union of a &-tuple of linearly independent points

of A in S and another point of A in 5 in &-f-l ways. But there are

Pt(A) such ^-tuples and a fe-tuple given, there are m — k other points

of A in 5.
Dividing by

/   m   \

\k+l)'

we obtain ckA.if^ck. Since, for even k>0, ak — ck, we have a2<=^021+2 for

/>0. Also ao = ai = Ci^C2 = a2. Hence the ak satisfy (7a). If t>0, then

/    tn    \ 2<+i 21

a2(+il ) = T2(+i(A) = P2(+i(A) + P2<+i(A)
\ 2* + 1/

= {the number of {2l + l)-tuples (Xi, • • • , X2(+i) of different lattice

points of A satisfying Xx G S, ■ ■ ■ , X2(+i G S of dimension ^ 2^}

2(       m — 2t m — 2t / w\ m — 2t /    m    \
^   P2((A)   -   =   T2((A) - =   02,1 J- =   02(( )•

2/ + 1 2/ + 1 \2</ 2* + 1 \2< + 1/

Dividing by

/    m   x

\2* + 1/

we obtain a2<+i = fl2( and (8a).

If, in the above proof we replace ak by bk, rk by irk, even by odd,

and in places 2/ + 1 by 2t, then we obtain (7b) and (8b).

Proof of Theorem 1. Again let A be a lattice with p(A) =m>0.

Let the numbers ak and bk be defined by (10). Then the ak satisfy

(7a) and (8a), the bk satisfy (7b) and (8b). If therefore h is odd,

h^n, h^m, we have
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1 + £ (-D*r*(A) = E ("DM   Jo* ^ 0 = «(A),
*-i *-o \ k /

by Lemma 2. But if h^n, h^m, we obtain the same result:

h m / pj\

1 + £ (-l)*r*(A) = £ (-l)M »^0 = a(A).
4=1 *-0 \ K /

In case g is even, g^n, g^m, we have

1 + £ (-l)*x4(A) = £ (-1)*( J** S 0 = a(A);
*=i *-o \ k /

and for g^ra, g^w

1 + £(-l)**t(A) = £ (-l)M   Jft* §: 0 = «(A).
4-1 4=0 \ « /

Therefore Theorem  1  is true if p(A) >0.   It is evidently  true   if

p(A)=0.

2. We now calculate the integrals of p*(A) and pJt_1(A) over the

space of lattices with determinant 1.

Theorem 2. Suppose k<n. Then p*(A) is B or el-measurable in the

space of lattices of determinant 1 and

(11) Rl=  f p*(OA0)d>(n) = — V.

Proof of Theorem 2. First, by the definition of p{{A), we see

rXi £ A, • • • , Xk £ A "

(12) pi(A) = — £   dim (Xh • • • , Xk) = y   p(Xi) • ■ • p(Xk),

.    Xi^ Xh, if i ^ h    _

where p{X) is the characteristic function of S.

On the other hand, we observe the following theorem, stated by

C. L. Siegel [5] and proved by C. A. Rogers1 [2]: If

v^ VXX E A, • • • , Xk E Al
*(A) = £,. ' ' Jp(Xi) • • • p(Xk),

Ldim (Xi, • • •, Xk) = kj
then

f lKQA0)tfp(a)
«/  J!"

1 C. A. Rogers [2], Theorem 3, take h = 0.
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exists and is equal to

f       f p(*0 • • • p{Xk)dX, ■ ■ ■ dXk.

Theorem 2 is an immediate consequence of these two results.

Theorem 3. Suppose k<n. Then pt_1(A) is Borel measurable in the

space of lattices with determinant 1, and

r\~1 = fp*-1(fiA0)dp(a)

d3)       =-EEE-( ••■ |p(*i)---

(*-! d,-      \
E — -X-*) <^1 ■ ■ ■ ̂ Xjfc_l •
<-i   9       /

Moreover,

._ yk-i

(14) i?*    <-[3*(3/4)»/2 + 5*2-"].
(*-l)!L

The sum in (13) is over all integral vectors D — {du ■ ■ ■ , dk-\), which

have highest common factor relative prime to q, and which obey \dj\ <q

for j<l and |d,| ^q for j^l. Further, if q = l, D is not (0, 0, • • ■ , 0)

nor of the form (0, • • • , 0, 1, 0, • • • , 0).

Before we can give a proof of Theorem 3 we need some lemmas.

Lemma 4.

"    Xi G A, • • • , Xk G A    "

£   dim (X1( • ■ • , X*) = * - 1   p(X,) ■ ■ ■ P(Xk)

Xi ?* X} \iij*j

r  Fi e a, • • •, Fj.! g a -
(15) =EEEI   dim (F,, • • • , Ft_0 = k - 1   p(F:) • ■ •

l-I  8=1    B ^j

Zd./oF.G A
i-l

E - r.J,

where the sum on the right hand side is to be taken over the same set of

vectors D as in Theorem 3.
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Proof of Lemma 4. If Xu ■ ■ • , Xk is in the sum of the left hand

side of (15), then dim (Xi, ■ ■ ■ , Xk) =k — l. Hence, the vectors

Xi, • ■ ■ , Xk span a(k — l)-dimensional space. In this space we con-

struct a system of orthogonal unit vectors e\, e2, • • • , ek-i. We write

Xj in the form

4-1

Xj «= £ ana (I £j £ k).
i-l

We define A, (1 ^j^k) to be the determinant

a\ i • • • Oi _,■_! Oi y+i • • • Oi 4

04-1 1   -   *   •  04_l j_l      ak-\ j+1   •   •   •   04-1 4

There exists a unique /, such that

| Aj\   <  | Ai\ , iij < I,    and     [ Aj\ £  | At \, if j £ /.

This   &-tuple   (Xi, • • ■ ,   X*)   corresponds   to   the   (k — l)-tuple

(Fi, • • ■ , Yk-i), defined by

Y\ = Xi, • • • , Fj_i = X;_i,

Fj = Xi+i, • • • , Fj,_i = Xj,

and to the number /, to the vector D = (0*i, ■ • • , dk-\) and o, uniquely

determined by

X = £ - F,
i-i    q

and

g.c.d. (o"i, • • • , 4-i, q) = 1.

Because of our choice of / to make \Ai\ maximal we have

\ dt\ < q, ii I < I,    and     \ dt\   ^ q, if / ^ I.

If g = l, then D(di, • • • , dk-x) is not of the form (0, 0,   • • • , 0) or

(0, • ■ • , 0, 1, 0, ■ • • , 0).
Since /, d, q, Yj do not depend on any particular choice of the unit

vectors e.\, ■ ■ ■ , ek-\, there corresponds to each term on the left side

of (15) exactly one term on the right hand side. If, conversely,

there are I, D, q, Yj on the right side of (15), then we take the cor-

respondence



398 WOLFGANG SCHMIDT [June

Xi = Yh ■ ■ ■ , X,_, = F;_,,       X, = j_ — Yu
i=i   q

X(+i = Yi, • • • , Xk = F*-i.

These two mappings are one-one and inverse to each other. This

proves the lemma.

Lemma 5 (C. A. Rogers). Let p{X\, • • • , Xm) be a Borel measurable

function which is integrable in the Lebesgue sense over the whole

(Xi, • • • , Xm)-space. Let q be a positive integer and D = (du ■ ■ ■ , dm)

be an integral vector with highest common factor relatively prime to q.

Then the lattice function

"I.GA, • • • , XmG A"

^   dim (Xi, • • • , Xm) = m
(16) co(A) = E P(Xi, ■■■, Xm)

m

E di/q, Xi G A
i=i

is Borel measurable in the space of lattices of determinant 1, and

(17) r<o(fiA0)dp(fi) =—{■■■   f p(Xi, • • • , Xm)dXi • • • dXm.

Proof of Lemma 5. Lemma 5 is essentially the case h = 1 of Theo-

rem 3 of C. A. Rogers [2]. The only difference is that we write l/q

instead of e^/q as in Rogers, where ei = g.c.d. (ei, q) and €i is the ele-

mentary divisor of the matrix D. But since g.c.d. (di, • • • , dm, q) = l,

we have ei = g.c.d. (ei, q) = l.

Lemma 6 (C. A. Rogers). If p(X) is a characteristic function, then

(18) JJp(X)p(F)p(X+ F+ a)dXdY ̂  2(3/4)"'2 ( j p(X)dx\ .

Proof of Lemma 6. See C. A. Rogers [3, Lemma 5].

Proof of Theorem 3. (13) is a straightforward consequence of

(12), Lemma 4 and Lemma 5 (take m — k — l). Therefore only (14)

remains to be proved. (14) implies that both sides of (13) are finite.

We evidently have

(i9) kl        _!    -       W J

p(x*_,)Pf E — x?jdXt ■ ■ ■ dxk-t,
\ <_i    q        /
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but now the summation is to be taken over all integral D with highest

common factor relatively prime to q and \dj\ ^q. If 0 = 1, then

D^{0, 0, • • • , 0) and =*(0, • • • , 0, 1, 0, • ■ • , 0).

In (19) we mean that the inequality holds, if the right hand side is

finite. We estimate the sum on the right hand side. We derive upper

bounds (A) for the terms with g = l and (B) for terms with o>l.

(A) There are g3*_1 possibilities for D. D either has two elements

dj, dj, both different from zero, or D is the form (0, • ■ • , 0, — 1,

0, • • • , 0). In the first case we have, by Lemma 6,

j        f p(.Xt) • ■ • p(Xk^)p( + Xh ± Xit ± • • • )dX, • • • o-AVi

g 2(3/4)»'2( f p(X)dX)      = 2(3/4)»'2F*-1.

If D is of the form (0, • ■ • , 0, -1, 0, • • • , 0), then

j- • • Jp(Xi) • ■ • p(AVi)p(-X,-)dXi • • • dXk-t = 0.

Thus

,„m   £ - f • • •   fp(*i) • • • p(*4-i)p( £- x\dXi ■ ■ ■ o-AVi
(20) d    lnJ J \ i=i o       /

= [3*(3/4)»'2]F*-1.

(B) For a fixed q> 1 the number of vectors D is at most (2c + l)*_1

^ (5/2)*~V-1- Consequently,

£ £ — f • • • f'p(^i) • • -p(X4-,)pf £ — x^dx, ■ --dx^
q=2    D       q*J J \  .= 1    0 /

(21) w °°     1
g   (5/2)4-1 2]   04-l-n]/4-l   =   (5//2)*-l2*+l-n £   —  F*"1

8-2 5_2    02

< (5/2)*-i2*+i-»y*-1 < 542-"F*-1.

By (19), (20) and (21) we get the upper bound

(14) rT1   ^- [3*(3/4)»/2 + 5*2""]F*-1.
(k-l)\

3. Proof of Theorem 4. Assume that (1) is satisfied. If h is odd and

h<n, we infer from Theorem 1 that
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fa(QA0)dp(fi) 2; 1 + E(-l)* f Tk(QA0)dfi(il)
J F *-l J F

h vi, h I.   ,

(-1) j?»- E*»
*=1 4=2

ft J/* k |/*-l

g 1 + E (-1)*- - E [3*(3/4)"'2 + 5»2-]-—.
fc-1 *!        *-2 (£ — 1)!

Using the Taylor expansion of e~v with a remainder after h-\-l terms,

we see that this implies that

I  a(flA0)dp(O)
•J F

* p*-i yh+i

2 e-y - E [3*(3/4)"/2 + 5*2-"]-
*=2 (*-l)l      (A+1)1

If g is even and g<w, we obtain, in a similar way

/«                                         y*-i 70+1
«(fiA0)dp(fi) S e~v + E [3*(3/4)»'2 + 5*2-]-— + ——— •

F                                                             A=2                                                            (*  —   1) 1 (g +  1) !

A combination of both these inequalities gives

(2) m(A(S)) =   f a(QA„)dp(fi) = «-^(l - i?),

and

[V                                                                             T/i-1                      J/0 + 1      -1

E [3*(3/4)*"2 + 5*2-"]-h-    < ££l                        J(*-D!    (g+i)lJ-

r   * y*-i j/a+1   -1

<ev    E [3*(3/4)"/2 + 5*2-"]-1-.
~    L=2 (*-l)!     (*+l)U

But, provided 1 ̂ k^n, we have

(23) 5*2-" = 3*(5/3)*2-» < 3*(5/6)» < 3*(3/4)*'2.

So

a yk-i

E [3*(3/4)»/2 + 5*2-] ——- e*
(24) " ("~1)!

A      3*—iy*-l

< 6(3/4)«'2 E -«7 < 6(3/4)«'VF.
*=2   (£ —   1) !
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Now take h to be odd and to have either the value n — 1 or the value

re —2. Then as V<n — 1 we have

yh+i yn-l

- ev < -ev.
(A+l)! (re-1)!

Since

e" > «"-7(w - 1)!,

it follows that

yh+i

(25) -er < Vn-ln-n+1ev+n.

(A+l)!

Using (24) and (25) in (22) we obtain

R < 6(3/4)"'^ + Vn-1n-"+1ev+n.

A similar argument shows that

R > - 6(3/4)n'2e47 - Vn-ln-n+1ev+n.

A combination of these inequalities gives (3) and proves Theorem 4.

Theorem 5 (Improvement of the Minkowski-Hlawka Theo-

rem). Let S be a Borel set, not containing the origin 0. Suppose

1 1
(26) F = — n log 4/3-log 3.

8 2

Then there exists an admissible lattice A with determinant 1.

In the original Minkowski-Hlawka Theorem there is F<1 instead

of (26). It was first proved by E. Hlawka [l]. In the meantime it was

proved to be true for F<2/(l+21-")(l+31_n) by the author [4] and

for F^re1/2/6 if re is sufficiently large by C. A. Rogers [3].

Proof of Theorem 5. We may assume that XES implies — X(£S.

We may also assume re=il3, because if re<13, then (26) yields F<1,

and the theorem is true. (26) implies (1). Hence (2) and (3) hold.

(26) also implies

6(3/4)"'Vv £ 2/3.

Further, as log 4/3< 1/3, we have F<re/24. Also e26'24<24/23. Thus

yn~in-n+iev+n < (i/24)"-1e26n/24

< 24(24)-«(24/23)

= 24(23)"" < 1/3.
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Combining these we obtain \R\ <1, so that m(A(S))>0. Conse-

quently, there exists an admissible lattice of determinant 1.

Theorem 6. Let S, T be two Borel sets. Assume that JGF yields

— XG-5Ur and that 0(£S. Further assume

V^ =72nloS4/3 - T lo8 3 " 4(3/4)"/2>
(27) 16 2

F(5U T) ^ V(S) + 4(3/4)"'4.

Then there exists a lattice A with determinant 1 which is S-admissible,

but not T-admissible.

Proof of Theorem 6. We may assume that I£5 yields — XQS.

Then never both XE5UT and -XG5UT. We introduce Si = S,

Si^S^UT. We may assume that equality holds in the second equation

(27), that is,

V(S,) = V(S0 + 4(3/4)"'-'.

Then

V(Si) g—« log 4/3- — log 3.
16 2

Writingay(A) =aSj(A), V,= F(5y), R,= R(Sj), c = (3/4)«'4, and apply-
ing Theorem 4 we infer

f a,(fiA„)dp(Q) = e~vi{\ - Rt),
J p

where

2 1
| R<\   ■£— (3/4)»'4 + 24(23)-" g (3/4)"'4 = c < — ■

Hence

f [a,(OA0) - «2(fiA0)]dM(fi) = e~yi(l - i?,) - e"F2(l - Rt)

= e-v2[eF2-vl(1 _ ^ - (J - ij,)] £ e-^[e<°(l _ c) _ (1 + c)]

> e-^[(l + 4c) (1 - c) - (1 + c)] = e~F2(2c - 4c2) > 0.

Consequently, there exists a lattice A satisfying «i(A) — a2(A) >0.

This implies «i(A)=l, a2(A)=0. Therefore there is a point of A in

52 = SKJT, but no point of A in Si = S. Thus A is S-admissible, but not

T-admissible.
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Theorem 7. Let Si, ■ • ■ , Sm be m Borel sets in Rn, re^ 13, each so

that XES yields — X£5 and with

m

(28) £ e-Ml + *(», V,)] g 1,
3-1

where Wj = mm (Fy, re-1) and R(n, V) =6(3/4)"'2641'+ Vn-1n~n+1ev+n.

Then there exists a lattice with determinant 1 which has at least one

point in each Sj.

Proof of Theorem 7. Clearly it is enough to prove the theorem if

V,• = n — 1. We obtain

/* r w ~i m
E«y(OAo)  ap(n) < Z«-V'[l + *(», ^)] = 1.

F L  3=1 J /=1

Consequently, there exists a lattice A such that £™i otj(K) =0 and

A is not admissible for any Sj.
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