THE MEASURE OF THE SET OF ADMISSIBLE LATTICES
WOLFGANG SCHMIDT

Introduction. Let .S be a Borel set in n-dimensional space which
does not contain the origin 0. We assume that there is no X so that
both X&S and —X&E.S. We say a point lattice A is S-admissible, if
there is no lattice point of A in S. We denote by A(S) the set of S-
admissible lattices and by V'=V(S) the measure of S.

The main result of this paper is

THEOREM 4. If

(1) V=E=n—1 and n =13,

then

@ mas) = [ du(®) = e7(1 - B),
QAGEA(S)IQEF

where

A3) | R| < 6(3/4)m124 + Vr-lyg=ntlghtn,

Here Q denotes a linear transformation of determinant 1, F is a
fundamental region with respect to the subgroup of unimodular trans-
formations of determinant 1, and u(2) is the invariant measure on
the space of linear transformations with determinant 1, defined by
C. L. Siegel [5], normalized so that

(4) f de(Q) =1.

Ao denotes the lattice of points with integral coordinates.

Theorem 4 will be used to prove Theorem 5 which is an improve-
ment of the Minkowski-Hlawka Theorem. We also prove two existence
theorems which are in a certain sense converses of the Minkowski-
Hlawka Theorem (Theorem 6 and Theorem 7).

The author is very indebted to the referce who pointed out some
errors of the originally submitted paper and made useful suggestions.
The originally stated Theorem 1 was wrong.
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1. We define the lattice function
1, for A€ A(),
0, for A& A(S),

and p(A) to be the number of lattice points of A in S. The usual bound
for a(A), used for the proof of the Minkowski-Hlawka Theorem, is

() a(A) = 1 — p(A).

In §1 we shall replace (5) by a better bound.
We define for 0<j<k=<n, k>0,

pi(A)
to be the number of k-tuples (Xj, - - -, Xi) of different lattice points
X; of A with X;ES, - - -, X3 €S and dim (Xy, -+ -, X&) =j. (Here
the order is immaterial, that is, we count % points of a k-tuple

(X4, - - -, Xi) only once and not k! times.)
We further define 7:(A) and 7 (A) by

- |

p:(A), if & is even,
m(A) = { k k=L, e .
pk(A) + Pk (A); if & is Odd)

and
or(A), if & is odd,
m(A) = { 5 k=1, ...
ox(A) 4+ o (A), if & is even.
Since OGS, 71(A) =p1(A) +p1(A) =p1(A) =p(A).
The purpose of this section is to prove
THEOREM 1.
g h
(6) 14 20 (= 1)Fm(A) 2 a(A) Z 14 X (1) (),
k=1 k=1
for any odd h=n and any even g=<n.

For example, we have for =1 and =3

a(A) 21— p(A) and a(4) Z 1 — m(4) + px(A) — pa(A) —pi(4),
respectively. For the proof of Theorem 1 we need some lemmas. We
consider the numbers

h

Ah = E(Z’)(-m O=<h<mm>o0).

k=0
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LEMMA 1.
Am <0, if I is odd;
A,’:, = 0, if his even.

ProoF oF LEMMA 1. We first assume 2 <m/2. Then we have

(7)=()

if » £ h. Therefore, if % is odd, we see that

-2 SN -7

and, if % is even,

-2 [UHC) -G )

Hm>h=m/2, then m—(h+1) <m/2 and

feg (e = (e - £ (e

m— (h+1)

=0— 2 (7:) (-—1)"'“‘ = (’—1)m+1A';_(h+”,

k=0

3
IIA
=2

I
e

Thus, if & is odd, we obtain the following:

If m is even, then A%~ ®*P >0, (—1)»*'=—1, and so 4}, <0;

if m is odd, then A7~ *+*Y <0, (—=1)"+1=1, and so 4 <0.

In a similar way we can prove that, if # is even, then A4,,=0. If
m=h, An=0.

LLEMMA 2. Let ao, a1, @2, * * *, Gnm be real non-negative numbers, for
which
(7a) 1= a9 = a, = a2 (0S5 20=m—2)
and
(8a) as S a1 O0O=2%=m—1)

hold. Then we have

(9a) E(:’) (= 1)kay <10,

k=0 i
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if either h is odd and h=<m, or if h=m.

But if be, b1, ba, - + -, b, are real non-negative numbers, for which
(7b) 1 =bo=b, bgmy Z ban 2=22U=Em—1)
and
(8b) b1 = ba (22t =m)
hold, then
(9b) E(m) (=1, 2 0,

=0\ k

if either g is even and g<m, or if g=m.

ProoF orF LEMMA 2. First we consider the case when (7a) and (8a)
hold. We may assume that as;41 =as;. Then, using partial summation
and Lemma 1, we have

(") vra=x[ =2 o o (") -y

kom0 t odd =0\ &

+ ahﬁ("’)(—nk

=0 \ &
B

Now the right side is less than or equal to 0, if % is odd, or if h=m.
So (9a) is true. Similarly (7b) and (8b) imply (9b).

LeEMMA 3. Let A be a lattice with p(A) =m>0. We define numbers
Qo @1, @2, * * * , Gm aNd bo, by, by, -+ -, b by a9=bo=1 and

10)  n(4) = ak( :’) and  m(A) = bk(:) 1<k=m).

Now we assert the following: The ax satisfy (7a) and (8a), the by satisfy
(7b) and (8b).

Proor oF LEMMA 3. We have

T](A) =m = a1<;n) = am

and therefore a;=1. Defining constants ¢; by

P:(A) = Ck( :l)
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we obtain

m k41
6k+1(k n 1) = pe1 (A)

= {the number of (£ + 1)-tuples (X, « - -, Xi41) of lattice points of
A with X, €S, - - -, Xiy1 € S of dimension & + 1}

<k(A)m—k_ (m)m—k_ (m)
=Y T\ e+ et/

The inequality holds because each (k41)-tuple considered can be
represented as the union of a k-tuple of linearly independent points
of A in S and another point of A in S in 241 ways. But there are
pE(A) such E-tuples and a k-tuple given, there are m —k other points

OfAln S.
< >

Dividing by
we obtain c¢x4; S cx. Since, for even k>0, ax=ci, we have as = asys for
t>0. Also ay=a,=c1 = c;=a,. Hence the ay satisfy (7a). If >0, then

m 2i+1 2t
G2t+1( ) = T2t+1(A) = P2I+I(A) + P2t+1(A)

2t+1
= {the number of (2¢ 4+ 1)-tuples (X4, - + -, Xaet1) of different lattice
points of A satisfying X, € .5, - - -, X241 € S of dimension = 2t}
> pii(A) u N m — 2 _ aw(m)m -2 _ 02:( m )
2+ 1 241 2t/ 2t +1 2%+ 1

Dividing by

()
2t 41
we obtain @a.y1=as: and (8a).

If, in the above proof we replace a; by by, 74 by mk, even by odd,
and in places 2¢t+1 by 2¢, then we obtain (7b) and (8b).

Proor oF THEOREM 1. Again let A be a lattice with p(A) =m >0.
Let the numbers ax and b; be defined by (10). Then the a; satisfy
(7a) and (8a), the b satisfy (7b) and (8b). If therefore % is odd,
h<n, h<m, we have
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L4+ 2 (=D*n(A) = 2 (-1)k<:‘) a <0 = a(A),

k==1 k=0
by Lemma 2. But if 2<#, h=m, we obtain the same result:
h m m
L4+ 2 (= DFn(a) = 3 (—1)k( )a,, <0 = a(4A).
k=1 ] k
In case g is even, g<n, g<m, we have
g g m
1+ 2 0m) = 5 0oz 0= atw;
k=1 k=0 k
and for g=n, g=m
g m m
14+ X (—=1)*m(A) = > (-1)’°< )bk = 0 = a(A).
k=1 k=0 k

Therefore Theorem 1 is true if p(A)>0. It is evidently true if
p(A)=0.

2. We now calculate the integrals of pf(A) and pi~*(A) over the
space of lattices with determinant 1.

THEOREM 2. Suppose k<n. Then ps(A) is Borel-measurable in the
space of lattices of determinant 1 and

1
(11) R = f pr(QA0)du(Q) = e
F .

Proor oF THEOREM 2. First, by the definition of p{(A), we see
X,EA, -+, Xs EA
(12) Pi(A) = % 22| dim (Xy, - -+, Xi) =7 | p(X)) - - - p(Xa),
Xi#Z X, ifi#h

where p(X) is the characteristic function of S.
On the other hand, we observe the following theorem, stated by
C. L. Siegel [5] and proved by C. A. Rogers! [2]: If

Xi€4A -, X EA
w(A)=Z[ *

dim (X, - -, Xy) = k]P(Xx) e p(Xa),

then
) HRA)I()

1 C. A. Rogers [2], Theorem 3, take k=0.
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exists and is equal to
f’ t fP(Xl) v ‘P(Xk)Xm s d X

Theorem 2 is an immediate consequence of these two results.

THEOREM 3. Suppose k<n. Then p} *(A) is Borel measurable in the
space of lattices with determinant 1, and

k—1

m‘=j??mmmm»
F
kRlisig1 D ¢°

1 2 & 1
(13) =—ZZZ_.Hﬁmy”

d;
p(Xk_l)p( > — X,) Xy - - dXey.

=1

Moreover,
k1 k-1

14 R, = 3k(3/4)n12 4 5%27n|.

(14) Cs o e ]

The sum in (13) is over all integral vectors D=(dy, - - -, dr—1), Which
have highest common factor relative prime to g, and which obey Id,-l <q
for <l and |d;| <q for j=1. Further, if ¢g=1, D is not (0,0, - - -, 0)
nor of the form (0, - - -,0,1,0,---,0).

Before we can give a proof of Theorem 3 we need some lemmas.

LeEmMMA 4.
Xi €A -, Xr €A
2| dim (X, -+, X)) =k —1{p(Xy) - - - p(X)
X;# X;if i %5

. YiEA -, Vi, EA
(15) =2 > > > |dim(Vy -+, Vic) =k —1{p(¥y) - -
l=1 g=1 D r—1
Z d;/qV: E A

il
k=1 4.
P(ch—l)P< Z - Yi),
i=1

where the sum on the right hand side is to be taken over the same set of
vectors D as in Theorem 3.
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Proor oF LEmMMA 4. If X, - - -, X4 is in the sum of the left hand
side of (15), then dim (X, - - -, Xi) =k—1. Hence, the vectors
X, + - -, Xi span a(k—1)-dimensional space. In this space we con-
struct a system of orthogonal unit vectors ey, €2, + « -, ex—1. We write
X; in the form

k=1
X; = 2 aije; 1sjs4h.
=1
We define 4; (1<j=k) to be the determinant

ayy v v v 411 a1j41 " 0 Gk

Ghoin® ** Gbijoi Gh_ijp1® * * Th_in
There exists a unique /, such that
| 4;] < | 4u|,if7 <1, and | 4;| S|4, ifj21
This k-tuple (Xi, - -, X&) corresponds to the (kB — 1)-tuple
(Y, - - -, Y41), defined by
Vi=Xy,: -, Vii= X,
Vi= Xy, o ooy Yier = Xy,

and to the number /, to the vector D=(d,, + « -, dr—1) and ¢, uniquely
determined by

k—1 d‘,
Xi=2 —V;
=1 g
and

ng (dl, LR dk_l, q) = 1.
Because of our choice of / to make | 4;| maximal we have
|d.| < g ift <1, and |d.| Sg,ift =1

If g=1, then D(dy, - - -, di—1) is not of the form (0,0, - - -, 0) or
,---,0,1,0 ---,0).

Since /, d, ¢, Y; do not depend on any particular choice of the unit
vectors e;, - + -, €1, there corresponds to each term on the left side
of (15) exactly one term on the right hand side. If, conversely,
there are I, D, ¢q, Y; on the right side of (15), then we take the cor-
respondence
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X,=Vy,- -, Xou=TViy, Xi= 3 — T,

Xl+1 = Y[, Tty Xk = Yk—l'

These two mappings are one-one and inverse to each other. This
proves the lemma.

LeEMMA 5 (C. A. ROGERS). Let p(X1, « - -, Xn) be a Borel measurable
function which is integrable in the Lebesgue semse over the whole
(X, + - -, Xn)-space. Let g be a positive integer and D= (dy, - + + , dm)
be an integral vector with highest common factor relatively prime to q.
Then the lattice function

Xi€A -, Xn€EA
dim (Xy, -+, Xn) = m
CORETEVED ] R p(Xs, o, Xon)
2 di/g, Xi € A
i=1

is Borel measurable in the space of lattices of determinant 1, and

(17) wa(QAo)dp(Q) = %f . fp(xl, Co, X)Xy s d X

ProoF oF LEMMA 5. Lemma § is essentially the case h=1 of Theo-
rem 3 of C. A. Rogers [2]. The only difference is that we write 1/¢
instead of e;/q as in Rogers, where e;=g.c.d. (&, ¢) and ¢ is the ele-
mentary divisor of the matrix D. But since g.c.d. (dy, * * + , dm, ¢) =1,
we have e;=g.c.d. (&, ¢) =1.

LLEMMA 6 (C. A. RoGERS). If p(X) s a characteristic function, then

18) [ [ o0p(mp(x + ¥ + ayixav = 2(3/4>"'2( Il p(X)dX)z.

Proor oF LEMMA 6. See C. A. Rogers [3, Lemma 5].

Proor oF THEOREM 3. (13) is a straightforward consequence of
(12), Lemma 4 and Lemma 5 (take m =k —1). Therefore only (14)
remains to be proved. (14) implies that both sides of (13) are finite.
We evidently have

Rk é—'kiz f fP(Xl)

g=1 D

(19)

k1,
P(Xk—l)p< Z — Xi>dX1 < dXh,
=1
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but now the summation is to be taken over all integral D with highest
common factor relatively prime to ¢ and [d,-! =gq. If ¢=1, then
D#(0,0,---,0)and (0, - - -,0,1,0, -+ -, 0).

In (19) we mean that the inequality holds, if the right hand side is
finite. We estimate the sum on the right hand side. We derive upper
bounds (A) for the terms with ¢=1 and (B) for terms with ¢>1.

(A) There are =<3*! possibilities for D. D either has two elements
d;, d,, both different from zero, or D is the form (0, - - --, 0, —1,
0, , 0). In the first case we have, by Lemma 6,

f fP(Xl) * P(Xk—l)P(iXi, + Xi, .- )Xm s dX

k-1
< 2(3/4)'»/2( f p(X)dX) = 2(3/4)n2V41,
If D is of the form (0, -+ - -, 0, —1,0, - -+, 0), then

f‘ t fP(Xl) e P(Xk-l)P(_Xi)dX1 v dXe =0,

Thus

=1 g,
(200 o l”f fp(Xl) . p(Xk_l)p< E? X") dX; - - - dXia

< [3:;(3/4):;/2][/1:—1.

(B) For a fixed ¢>1 the number of vectors D is at most (2¢+1)*-!
< (5/2)*1g*~1, Consequently,

iZ f f p(X) - p(Xk-op(E )dxl e dXm

¢=2 D (" i=1 ¢
(21) > 1
< (5/2)F E gFInVEmL < (5/2)k12k+1-n Z — k1
g=2 =2 ¢

< (5/2)F12k+1-nYk—1 < SEQ—nYk—1,
By (19), (20) and (21) we get the upper bound

k—1
(14) R, = &= D1

[3k(3/4)n/2 + SkZ—n]Vk-l.

3. Proof of Theorem 4. Assume that (1) is satisfied. If # is odd and
h<n, we infer from Theorem 1 that
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[ a@roiu@ 2 1+ 3 (—0* [ r@aniuce)

k=1

h h
214+ 3 (-'R - X R

k=1 k=2

PRI e
214 3 (1) — — 3 [34(3/4)"/2 + 5e2-n .

k=1( ) I (3/4) (B —1)!

Using the Taylor expansion of e~V with a remainder after A+1 terms,
we see that this implies that

f a(QAo)du(Q)
. Vet %223}

If g is even and g <#, we obtain, in a similar way

k—1 Votl

) (M) = 7 3 [/ + 2] e

A combination of both these inequalities gives

@ m(A©) = [ a@agau® = 7 - ),
F
and
g VE-1 Vot
—ev 3k(3/4)n12 4 5k2—n <R
| E e + la it e
(22) 13 Vk—l Vh.+1
<V k n/2 kQ—n
= [g (342 + 5277] (b — 1)1Jr (b + 1)!]’
But, provided 1 =k =#, we have
(23) Sk2—n = 3k(5/3)k2n < 3%(5/6)" < 3k(3/4)n/2,
So
h E—1
3k 4 n/2 k)—n \'4
é[ 3/ + 5+2 ](k—l)!e
(24)
h 3k—1Vk—l
< 6(3/4)n2 Z e¥ < 6(3/4)n1%7.

= (B —1)!
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Now take % to be odd and to have either the value #—1 or the value
n—2. Then as V<n—1 we have

17433 pr—t
&V < v
(h+1)!

BECEE
Since
e > nl/(n— 1))
it follows that
Pt
4+ 1)!

Using (24) and (25) in (22) we obtain

R < 6(3/4)r%V 4 Vrn—lp—ntleVtn,

eV < Vn—ln—n+leV+n_

(25)

A similar argument shows that
R > — 6(3/4)"2%tV — Yr—lp—ntlgVin,
A combination of these inequalities gives (3) and proves Theorem 4.

THEOREM S5 (IMPROVEMENT OF THE MINKOWSKI-HLAWKA THEO-
REM). Let S be a Borel set, not containing the origin 0. Suppose

1 1
(26) V= Enlog 4/3 — Py log 3.

Then there exists an admissible lattice A with determinant 1.

In the original Minkowski-Hlawka Theorem there is V'<1 instead
of (26). It was first proved by E. Hlawka [1]. In the meantime it was
proved to be true for V<2/(1+21"")(1+43!"") by the author [4] and
for V'=<u'2/6 if n is sufficiently large by C. A. Rogers [3].

Proor oF THEOREM 5. We may assume that X &S implies — X &S.
We may also assume # =13, because if # <13, then (26) yields V<1,
and the theorem is true. (26) implies (1). Hence (2) and (3) hold.
(26) also implies

6(3/4)124 < 2/3.
Further, as log 4/3<1/3, we have V<n/24. Also e®/%<24/23. Thus
'Vn—ln—n+leV+n < (1/24)n—le25n/24
< 24(24)—(24/23)
= 24(23)" < 1/3.
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Combining these we obtain [Rl <1, so that m(4(S))>0. Conse-
quently, there exists an admissible lattice of determinant 1.

THEOREM 6. Let S, T be two Borel sets. Assume that X ET yields
—X&GESUT and that O S. Further assume

1 1

V(S) £ —nlogd/3 — — log 3 — 4(3/4)n2,
an ()_16nog/ 5 log (3/4)
VIS\UT) 2 V(S) + 4(3/4)/,

Then there exists a lattice A with determinant 1 which is S-admissible,
but not T-admissible.

ProoF oF THEOREM 6. We may assume that X ES yields — X &.S.
Then never both X&S\UT and —X&SUT. We introduce S,=35,
Se=SUT. We may assume that equality holds in the second equation
(27), that is,

V(S2) = V(S1) + 4(3/4)n/4.
Then

1 1
V(S:) < —nlog4/3 — — log 3.
(S2) P g4/ 5 log

Writing a;(A) =as;(A), V= V(S)), R;=R(S;), c=(3/4)"'4, and apply-
ing Theorem 4 we infer

fm@MMMD=rW1—&L
F
where
2 1
| R:| = < G/ + 24028 = B/ = e < -

Hence

f‘[al(QAo) - ag(QAo)]du(Q) = _Vl(l - R;) - e‘V2(1 — R»)

= e Ve Vi1 — R) — (1 = Ry)] 2 e™2[ete(1 — o) = (1 + )]

> eV (1 4+ 40)(1 —¢) — (1 4+ ¢)] = eV2(2c — 4¢?) > 0.
Consequently, there exists a lattice A satisfying ai(A) —aa(A) >0.
This implies oy(A) =1, a2(A) =0. Therefore there is a point of A in

S:=SUT, but no point of A in S;=3S. Thus A is S-admissible, but not
T-admissible.
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THEOREM 7. Let Sy, + -+, Sm be m Borel sets in R,, n=13, each so
that XE S yields — X &S and with
(28) 2 e it + R(n, V)] S 1,
Je=1

where W;=min (V;, n—1) and R(n, V) =6(3/4)" 2%t 4 Vn—ly—ntigV+n
Then there exists a lattice with determinant 1 which has at least one
point in each S;.

Proor oF THEOREM 7. Clearly it is enough to prove the theorem if
Vi<n—1. We obtain

f [ > a,-on)] du(Q) < 3 Vil + R(n, V)] S 1.

el i=1

Consequently, there exists a lattice A such that Z}"_l ;(A) =0 and
A is not admissible for any S;.

REFERENCES

1. E. Hlawka, Zur Geometrie der Zahlen, Math. Zeit. vol. 49 (1944) pp. 285-312.

2. C. A. Rogers, Mean values over the space of lattices, Acta Math. vol. 94 (1955)
pp. 249-287.

3. , The ber of lattice points in a set, Proc. London Math. Soc. vol. 22
(1956) pp. 305-320.

4. W. Schmidt, Eine Verscharfung des Satzes von Minkowski-Hlawka. Monatshefte
fiir Mathematik vol. 60 (1956) pp. 110-113.

S. C. L. Siegel, A mean value theorem in geometry of numbers, Ann. of Math. vol. 46
(1945) pp. 340-347.

MONTANA STATE UNIVERSITY



