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CONNECTED SETS OF VAN VLECK

PAUL M. SWINGLE

Both Vitali and Van Vleck have given interesting constructions of

Lebesgue nonmeasurable sets in euclidean Ex. Here we give a gen-

eralization for the construction of Van Vleck for Em, m^2; our inter-

est is in the type of connected set that can be so obtained. Elsewhere

we will consider the construction of Vitali. Of interest also is the inter-

lacing of these connected sets.

Below 12 is the first transfinite ordinal whose cardinal is the same as

that of the linear continuum: a, fi, y are ordinals, >0 and <fi. We

will say that the Van Vleck basic set for a given point Pa

= (xia, x2a, ■ • • , xma) in (xi, x2, ■ • • , xm)-coordinate space is the

set of all (x[a, x'2a, ■ • ■ , x'ma) where for each j (j=l, 2, • • ■ , m), we

have as in [l, p. 240 ],

00 ' ti

(1) *',-„ = —- ± —      (u, v, p = 0, 1, 2, • • • ).
2(±p)       2"

Van Vleck constructs two complementary sets in Eu each a reflection

about x = l/2 of the other; it is in part because measure is invariant

under reflection that his construction gives Lebesgue nonmeasurable

sets.

We will take the Van Vleck Xi-reflected set for Pa as the set of all

(—x'la, x2a, ■ ■ ■ , x'ma) with x'ja as above, i.e. it is the Van Vleck basic

set for Pa reflected about Xi = 0; and the (xh, x„, • • • , x^-reflected

set for Pa is the Van Vleck basic set for Pa reflected about the co-

ordinate subspace where xn = 0, x„ = 0, • • • , x& = 0, i.e. the set of all

(x'i'a, x2a, • • • , x^'J, where x'ta= —x'ta for t = h, g, ■ ■ ■ , k and other-

wise x'ta = x'ta: these reflections include one about the origin, referred

to as the (m — w)-coordinate space below.
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It is easier to see our desired construction if we state this by means

of Zermelo's axiom of choice. Let M be the set of all points of ETO

which have all coordinates rational: as noted by Van Vleck we must

take our points from Em — M in order to have the basic set and its

reflections disjoint. Choose then in Em — M a point Pi. We have de-

pendent upon Pi then the Van Vleck basic set for Pi together with

all the possible (xh, xa, ■ ■ ■ , xk)-reflected sets for Pu the sum of all

of which is a countable set which we will call Vi and PiE Vi. Choose

P2EEm — M— Vi. Take V2 likewise the sum of the Van Vleck basic

set for P2 and all its reflections. Having for a<Q chosen by induction

PB for all /3<a, choose PaEEm-M-(Vi+V2+ ■ • • + VB + • • ■),

where Va for Pg is of similar construction to V\ for Pi.

Let now 5 be the sum of all the Van Vleck basic sets for every

Pa (a = 1, 2, • • • , /8, • ■ • ; /3<S2) plus the sum of all those

(xh, xB, ■ • ■ , Xi)-reflected sets for each Pa excepting none of

xh, xg, ■ ■ • , xk is taken as xn. Let C = Em — (S+M). Thus we see

that C is the reflection of 5 about xm = 0. Also C is the reflection of 5

about the origin, but that about xm = 0 is the better for our desired

construction of connected sets to give Theorem 1 below. We note

now, without repeating the proof, that the methods used by Van

Vleck [l, pp. 238-239] will show that 5and Care each nonmeasurable

Lebesgue; also it is to be noted that these sets can be broken up in

such a manner that this can be shown by the same methods used for

sets of Vitali; we will not do this here. We note further that with meas-

ure invariant under reflection each of the possible (xn, xg, • ■ ■ , xk)-

reflected sets of the sum, W, of the Van Vleck basic sets for all P„

must have the same measure as W has, if W has measure. But there

are a finite number of these reflected sets and thus the sum of these

for 5 cannot give the Lebesgue nonmeasurable set 5, and similarly

for C. Hence W and each of its (xn, xtt, ■ ■ ■ , x*)-reflected sets must

be Lebesgue nonmeasurable.

We wish now to put a condition upon the choice of the P„ above

which will insure that S+M be connected. We note by Knaster and

Kuratowski's well known theorem [2, Theorem 37, p. 233] that S+M

is disconnected if and only if there exists a separating boundary

continuum B in Em — (S+M), i.e. CZ)B. Also because of the homo-

geneous character [l, p. 238] of Van Vleck's construction of S and C

every translation through any distance +u/2v (u, v=l, 2, ■ ■ ■) in

each Xj direction must give a translated B contained in C. For each

B furthermore reflection about xm = 0 gives a B', contained in S,

which is a separating boundary continuum of C+M. Thus, if B is

curved, reflection about xm = 0 will give a B' which, when translated,
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will intersect it: this is impossible since S^)B', C^)B and SC is

vacuous. Also if B is an (m — l)-dimensional generalized plane not of

equation xm = c, c a constant, we will get a similar contradiction by

the use of the rational translations of B'. If one (m — l)-plane xm = c

separates S, there are at least a countable infinity of parallel ones

which separate it also; and parallel to these are infinitely many that

separate C. Thus in choosing the Pa (a= 1, 2, • • • , fi, • ■ • ; /3<Q) by

Zermelo's axiom of choice and in putting the Van Vleck basic sets for

the P„ in S or C, if for an xm = c and for fi<a we have put the Van

Vleck basic set for a Pg in S we must put one for a Pa in C, i.e. make

sure that each xm = c contains points of both 5 and C. Because each

basic set is dense in Em, it follows that both 5 and C will be dense

in xm = c and also dense in every separating boundary continuum of

Em. Thus we have the Theorem:

Theorem 1. The euclidean space Em, m^2, is the disjoint sum of M,

S and C, where M is of measure zero and S+M and C+M are each

Lebesgue nonmeasurable connected sets of Van Vleck; furthermore, if

R is any connected region, then R-(S+M) and R-(C+M) are each

Lebesgue nonmeasurable connected sets, i.e. S + M and C+M have

these properties locally.

Proof. This follows by the methods above. By taking points of

both 5 and C on every xm = c, these (m — 1)-planes each have these

properties locally and the argument above about other separating

boundary continua holds locally. Van Vleck's proof for Lebesgue

nonmeasurability goes through for any intersection of S and C with

an (m — l)-square and thus we have the desired local nonmeasurabil-

ity; since M is of measure zero, being the set of all points of Em with

only rational coordinates, its addition does not change the property

of being nonmeasurable.

Let us call the set W above, i.e. the sum of the Van Vleck basic

sets for all P„, the basic set of Van Vleck; let its (x*, x„, • • • , xk)-

reflected sets be W, (i= 1, 2, • • • , 2m— 1), each Wt being a reflection

of W about some (m—j)-coordinate subspace (j=l, 2, • ■ ■ , m),

including the origin. Since being connected is invariant under reflec-

tion, if W is connected each Wi is also: in order to choose the Pa

above so that W is connected we need to use Zermelo's axiom of

choice and the hypothesis of the continuum. To do this we may fol-

low the well known method of Knaster and Kuratowski in [2, p. 248],

well-ordering the class \By} of separating boundary continua of Em:

however we will use the class {Ba' } defined below instead, since its

use will make W not only connected but also locally connected. Since
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Em is perfectly separable it has a countable base {Ri} of regions: for

each Ri and each By consider the nondegenerate maximal connected

subsets of RiBy, letting {Ba' } be the set of these. Since {Bi } is

of the power of the continuum we can well-order it:

(2) Bi,Bl, •■•;■••, Bi, •• • a < fi,

where Q is as above the first uncountable ordinal.

We can choose Pi E B{ — M; then we can choose P2 E B2

■ (Em — M— V), since there are only a countable number of points in

M+ Vi, these being as above. By transfinite induction we can choose

PaEEm-M-(Vi+V2+ ■ • ■ +VB+ • • • ) where VB (8<a) is al-

ready taken as above and also take PaEBi. It is possible that the

sum of the Van Vleck basic sets for all Pa, EBi, we here take are

not enough to give the basic set W of Van Vleck above, i.e. other P„

still need to be taken; however the sum of those for PaEBa' is both

connected and locally connected, and these properties are not de-

stroyed by the inclusion of additional points Pa. Thus it follows that

both W and each Wi are connected and locally connected. Hence

we have:

Theorem 1'. The euclidean space Em, m^2, is the disjoint sum of

sets M, W and Wi (i = l, 2, ■ ■ ■ , 2m—1) each dense in Em, where M

is of measure zero, W and each Wi are locally connected, Lebesgue non-

measurable, connected sets and each has the nonmeasurability property

(Theorem 1) locally: here W is the basic set of Van Vleck and each Wi is

a reflection of W about some (m —j) -coordinate space (j = 1, 2, • • • , m).

Proof. This is given above completely.

By using the hypothesis of the continuum and Zermelo's axiom we

can show that there is a Van Vleck basic set W which is almost, i.e.

except for a set of measure zero, an indecomposable connected set W

dense in Em. To do this we take as in [3, p. 818] a countable set {Z,}

of disjoint cylinders such that, if R and R' are any two disjoint re-

gions of Em, there exists a separating boundary continuum of R con-

tained in some Zi plus the boundary of R': these cylinders cause W

to be indecomposable by a well known method used in the proof

for M in [3, p. 818]. Consider the class {Ba} of all separating bound-

ary continua of Em. Let, for Ba, Bi' consist of all points of Ba not

contained in an open subset of BaZ{ for any Zt. Let Bi =Bi'

— 0Z{. It is known [4, Theorem 44, p. 30] that Bi is uncountable.

We can choose the Pa for W now using these Bi as we used Bi

above in the proof of Theorem 1': just as there we may have to take

other Pa besides the PaEBi. The set W consists of the sum of the
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Van Vleck basic sets for all these Pa, except for points that may be in

UZ,-; W may not be a basic set W of Van Vleck but is except for

Wl)Zi. Since each Z; is of measure zero, UZ; is also; hence W is

almost a basic set of Van Vleck and it is Lebesgue nonmeasurable.

Since each W B« 9^0, W is connected and is indecomposable by the

well known type of proof used in [3, p. 818]. Since these properties

are invariant under reflection, each W( has them also and we have:

Theorem 2. The euclidean space Em, m^2,is the disjoint sum of M',

W and Wi (i — 1, 2, ■ ■ ■ , 2m—1) each dense in Em, where WI is a

reflection of W about some (m —j) -coordinate subspace (j=l,2, • ■ ■ ,m),

W is almost a basic set of Van Vleck, W and each WI are Lebesgue

nonmeasurable indecomposable connected sets; and M' is of measure

zero.

Proof. This is given above, noting that we take M' = M+\}Zt

-UWi plus the reflections of \JZt-UWi (t = l, 2, ■ ■ ■ ). The same

proof would give a similar theorem where W is w-indecomposable.

Theorem 3. The euclidean plane E2 is the sum of the sets M', W

and Wi (i=l, 2, ■ ■ ■ , 2m —1) each dense in E2, where W is almost a

basic set of Van Vleck, Wi is a reflection of W about some (m—j)-

coordinate subspace (j = 1, 2, • • • , ni), and W and Wi are each a

Lebesgue nonmeasurable biconnected set with origin p as dispersion

point; M', W'—p, and Wi —p are disjoint.

Proof. Let {Z,} here be the class of straight lines Xi=z>x2, where v

takes on all rational values. Let Pa now be taken exactly in relation

to \Zi} as was done in the proof of Theorem 2. Let W' consist of p

plus the sum of the Van Vleck basic sets for the P« as in that proof,

taking W' UZi = 0. Since each W' Ba' 9^0, W' is connected as in fact

is p + \JPa. We note that Wi Dp.

Suppose that W' — p contains a subarc / of some Xi = v'x2, where v'

is irrational. Then W{ contains a reflection, /' say, of t. Also, except

for points in UZi, because of the homogeneity of Van Vleck's con-

struction W' must contain arcs parallel to t, at least one of which,

t" say, crosses t'. But as t'(JZi = 0 we see that t' and t" must inter-

sect in points not in llZ^; hence this intersection is common to

W'■ Wi, =0, which is a contradiction. Thus W'—p must be totally

disconnected and so it follows that W', and each Wi, must be bi-

connected with p as dispersion point. Therefore the theorem is true.

From the proofs above we can obtain the maximal interlacing of

connected sets under Van Vleck's construction as follows. We will

call A" = UPa the   Van  Vleck core set. We note that our proofs of
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Theorems 1' and 2 give that K is connected and in Theorem 3 give

that K is totally disconnected but K+p is connected: in all of these

AUZj = 0. We see that (1) above gives infinitely many transforma-

tions of K: these, together with the (x*, xg, ■ ■ ■ , xk)-reflections

above, we will call Van Vleck transformations. These include rational

translations when p = Q in (1), expansions and contractions when

M = 0, or combinations of these including expansions in some direc-

tions and contractions in others, or any of these combined with

translations or combined with reflections. From basic definitions we

see that the properties of having measure zero, or measure nonzero,

or of being nonmeasurable are invariant under these transformations.

Also they leave topological properties invariant. That the sets we

get by using one of the Van Vleck transformations on K is Lebesgue

nonmeasurable is seen more easily by noting that except for expansion

and contraction they are similar to sets of Vitali and the methods

used for Vitali sets will show all of these nonmeasurable. Hence we

have:

Theorem 4. For m^2 and M as above Em — M is the disjoint sum

of the Van Vleck core set K together with the sets Kt (i=l, 2, ■ ■ ■ )

where the Kt are obtained by taking all possible Van Vleck transforma-

tions of K: K, and so each Kf, is Lebesgue nonmeasurable. We can take:

(1) K, and so each Ki, a connected, locally connected set as is W in

Theorem 1'; or (2) K, and so each Ki, is an indecomposable connected

set; or (3), for m = 2, K+p, and so each Ki+pt, is a biconnected set,

each with dispersion point p or pi in M. Each one of the sets M, K and

Ki is dense in Em.
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