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The area of a triangle in a Banach space was defined in [5] and

then Lebesgue's definition for the area of a continuous function

(surface) was applicable to a surface in a Banach space. If X is a

continuous function on a closed simply-connected Jordan region /

into a Banach space B let LB(X) denote its area in accordance with

this definition. Let m be the space of bounded sequences [l]. It was

shown that isometric functions1 on / into m have the same Lm area.

If X is continuous on J into a metric space M there is a continuous

function x on J into m which is isometric with X. Define L(X) to be

equal to Lm(x).

If X is continuous on / into a Euclidean space E, then LE(X) is

the classical Lebesgue area of X. It was shown that L(X) =Le(X)

and hence it seemed reasonable to call L an extension of Lebesgue

area which applied to surfaces in a metric space.

Now let us consider those functions which are continuous on /

into a Banach space B. There are two Lebesgue type areas available,

L and LB. Morrey's representation theorem [3] and the cyclic ad-

ditivity theory were used to show that L=LB under a variety of

conditions, in particular, as mentioned above, if B=E.

The hypothesis in Morrey's theorem that the functions range in

E was too strong a restriction to enable us to conclude that L(X)

= LB(X) for all Banach spaces B and continuous functions Ion J

into B. In [6] Morrey's theorem is extended to apply to surfaces in a

metric space. We shall see that this version of Morrey's theorem can

be used to show that L and LB are equivalent, whenever LB is ap-

plicable.

Let / be contained in the u, v plane. According to Cesari [2], a

function Jon J into £ is a D-mapping if each component of X is

A.C.T. in J°, the interior of /, and if all of the partial derivatives

are square summable over J°. This definition can be generalized so as

to apply to functions with range in a Banach space [6]. The property

of being a D-mapping is invariant under an isometric transformation.

If X is a D-mapping in B then X is of class LB in the sense of [5] (see

[4, IV. 4.33]).
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1 If X and ¥ map J into metric spaces M and N respectively, then X and Y are

isometric if distjir (X(u), X{v)) =dist,v (F(«), Y(v)) for all u, vEJ-
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The equivalence of L and Lb, whenever the latter is defined, is a

result of the cyclic additivity theory, the fact that Frechet equivalent

functions have the same Lebesgue area, L or LB, and Theorems 1

and 2 (from [5] and [6], respectively).

Theorem 1. // range XEB then L(X) ^LB(X). If X is of class LD

thenL(X)=LB(X).

Theorem 2. If range xEm, if x is light, and if L(x) < + oo, then

there is a D-mapping y which is Frechet equivalent to x.

Theorem 3. // X is continuous on J into B then L(X) = LB(X).

Proof. We can use Theorem 1 and the cyclic additivity theory

to assume, without loss of generality, that X is light and that

L(X)< + <x>. Take x isometric with X, range xEm. According to

Theorem 2 there is a .D-mapping y which is Frechet equivalent to x.

For each uEJ choose v to satisfy x(v) =y(u) and define Y(u) =X(v).

(If fli and v2 correspond to u then x(vi)=x(v2) which implies that

X(v{) =X(v2).) It is easy to see that X and Y are Frechet equivalent

and that Fand y are isometric. Thus Fis a D-mapping and Theorem

1 enables us to conclude that LB(X) =LB(Y)=L(Y) =L(X).
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