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1. The following question, raised originally by S. Mazur, appears

in S. M. Ulam's collection of mathematical problems [l]: does there

exist a closed convex surface whose plane sections give all plane closed

convex curves, up to affinities? While this problem is apparently still

unsolved the answer is almost certainly negative. At least three

different extensions of the problem could be considered: (1) to allow

the plane sections an equivalence up to a larger class, or perhaps a

larger group, of transformations than the affinities, (2) to ask that the

set of all plane sections of the surface should only contain a suffi-

ciently large subset of the set of all closed convex curves, for instance,

the set of all convex polygons of given diameter or perimeter, all

analytic ovals of fixed length, or all ovals of given constant width,

and (3) to generalize the concept of a plane section.

This note is concerned with the last possibility. Instead of plane

sections of a surface one considers its limit sections. Roughly speak-

ing, these are limits of sequences of magnified sections of a surface

by sequences of planes converging to a supporting plane. For in-

stance, if a strictly convex surface is sufficiently regular the limit sec-

tion will always be an ellipse with axes proportional to the square

roots of the principal radii of curvature. Thus the limit section is a

generalization of Dupin's indicatrix.

The following notation will be used: C and D will denote curves,

other capital letters will usually denote surfaces, P will be reserved

for planes, small letters will stand for points, and small Greek letters

will be non-negative constants. A surface (curve) will always mean

a closed strictly convex surface (a closed plane convex curve). A

part of a surface cut off by a plane will be called a cap. The set of all

curves will be denoted by 11.

2. Let 5 be a surface and let OXYZ be a Cartesian frame with

the origin 0 inside S. Let a sequence {Pn} of planes converge to a

supporting plane P of 5 at 5. Suppose that all planes P„ intersect

5 and let Cn = Sr\Pn. Let }Xn} be a sequence of constants and let

\nCn denote the curve similar to Cn in the ratio Xn: 1. The limit section

C of 5 at s with respect to the sequence {Pn} is defined as the limit,
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if it exists, of the sequence {X„Cn}. More accurately, it is the limit of

suitable reorientations in space, by rigid motions, of the curves of

the sequence {XnC„j. It must be emphasized that a limit section de-

pends on the choice of the sequence of the intersecting planes. Fur-

ther, if C is a limit section, so is XC. The set of all limit sections of a

surface at a point 5 on it will be denoted by Q(s). The set of all

parallel limit sections at s, that is, limit sections formed with respect

to sequences of planes parallel to a supporting plane at s, will be de-

noted by Qp(s). A point 5 of a surface is called universal if Q(s) = 11,

and it is called ^-universal if Cp(s)=1t. A surface 5 is universal if

U.es 6(5) =11 and it is ^-universal if Uses Qp(s) = 11.

3. Theorem 1. There exists a surface 5 with these properties: (1) 5 is

of class C°° except at one point s, (2) S possesses a unique supporting

plane at s, (3) s is a p-universal point.

Select in 11 a countable basis of analytic curves { C„}, n = 1, 2, • •

Let OXYZ be a Cartesian coordinate frame, let {a„} be an increasing

convergent sequence with ao = 0, and let j/x„} be a decreasing se-

quence with juo = 1 and lim /xn = 0. These sequences will be determined

in the process of construction. Let Co be the unit circle about the

origin in the plane z =ao. In the plane z=an place the curve pnCn so that

the following conditions are satisfied: pnCn encircles the z-axis, the

projection of jun+iCn+i onto the plane z = an lies within pnCn, and any

cone with vertex on pH+iCn+i and with p.nCn for directrix contains

PoCq, • ■ ■ , pn-iCn-i in its interior. The sequences ja„} and {fin}

can always be found so that the above conditions are satisfied. It

follows now that there exists a cap P with these properties: P is based

on Co, its intersection with the plane z = an is pnCn, and it is of class

C°° at all points except at the point 5 with coordinates (0, 0, lim an).

The last property calls for the standard technique which utilizes the

functions like f(x) =exp ( — 1/x2). In addition, by making the se-

quence {«„} converge fast enough the cap P can be made to possess

a unique supporting plane at s.

Now complete T to a surface by closing it up with a hemisphere

and modify this surface along the join to a surface 5 which is of class

C°° everywhere except at s. The surface 5 is easily shown to satisfy

the conditions of the theorem: for any C in It there exists a subse-

quence {Cnj} whose limit is C; now the planes whose equations are

z=anj, together with the sequence {m^1} of constants, determine the

parallel limit section C at s.

Theorem 2. There exists a surface S every point of which is universal.
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It will be shown first that it suffices to construct 5 so that the set

of its ^-universal points is dense on it. Let S be such a surface and

let 5 be any point on it. By assumption, there exists a sequence

{sn} of ^-universal points on S, which converges to 5. By definition,

for each point sn there exists a convergent sequence {Pmn} of planes,

m = 1, 2, • • • , which converges to a supporting plane at sn, and which

determines, together with a sequence {Xm»} of constants, a parallel

limit section C at s„. Here C is an arbitrary member of It. Now it is

easy to show that the diagonal sequence {P™}, together with {X„re},

determines a limit section C at s.

The surface S with a dense set of ^-universal points will be con-

structed by the process of successive approximations. Let OXYZ be

a Cartesian coordinate frame and let Si be the unit sphere about the

origin. Let {Hn} be a sequence of half-rays through 0, which is

dense in the set of all half-rays through 0. Let {/3„J be a sequence

of small positive constants, to be determined later on. Let Si = .SiP\ip

and let vx be the point on Osi whose distance from 5i is p\. Put a plane

Pi through vi at right angles to Osi and remove from 5X the cap based

on Pi. Let Pi = 5ifN\Pi and complete the remainder of Si to a surface

S2 by placing over Di a cap Pi. This cap is constructed as in the proof

of Theorem 1 but it is based on Pi. Also, let P be such that 52E-S'i.

Now repeat the same procedure on 52, using s2 — H2r\S2, B2, v2, D2, P2

and T2 in place of Si, p\, vx, Dx, Pi and Pi. In this way one obtains a

surface S3ES2. Let the process be continued. In the limit there re-

sults a surface 5 which will be shown to possess a dense set of p-

universal points for an appropriate choice of the sequence {fin}-

By construction, each Tn contains a ^-universal point pn. There-

fore at the rath stage Sn there are n — 1 such points pi, ■ ■ ■ , pn-i- The

sequence {/3„} is to be selected so that the following conditions hold:

(1) during the deforming of Sa into S„+i the points pi, ■ ■ ■ , pn-i, are

left in place together with some neighbourhoods (these of course

shrink with increasing n), and

(2) in the limit the points {/>„}, » = 1, 2, •■• , still function as p-

universal points on S.

The first condition is easily met by making {/3„} tend to zero fast

enough. The second condition is less simple but it can also be satis-

fied in the same way.

At the rath stage S„ let P1 be the unique supporting plane of Sn,

and also of S, at pi. Let P^i be the plane parallel to P1 on the origin-

side of it, and whose distance from P1 is x. Let Cnxi = Pxir\Sn, let

/„i(x) be the length of Cnxi, let Fnxi = Cnxif~^(S — D"_! Sj), let g„i(x) be

the length of Fnxi, and let hni(x) =gni(x)/f„i(x). Roughly speaking,
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hni(x) is the percentage modification of a parallel section near pi, due

to the deformations of the first n — 1 stages. The ^-universal point

pi on 52 will also be ^-universal on the limit surface 5 if

lim    &„i(x) = 0.
x—*0, n—*«

Now the deformation functions hnk(x) are formed for other ^-universal

points pk, as they appear in the process. The condition (2) above will

be satisfied by selecting {/3n} so that hnk(x)^x. This completes the

description of 5 and the proof.

If 0 is the empty set then trivially 0£Cp(s)£e(.s)£ll. The next

theorem is concerned with the position of the two middle sets between

the two extreme ones. It is shown that the most radical situation may

occur.

Theorem 3. There exists a surface 5 awd a point s on it, such that

Gp(s) = 0 <™d e(s)=1l.

Consider the basis \Cn\ used in the proof of Theorem 1. Choose

a„ on Cn so that the radius of curvature of Cn attains its maximum

y„ at qn; let also 8n be its minimum. Let OXYZ be a Cartesian co-

ordinate frame and let P denote the OXY plane. Let {X„} be a se-

quence of constants, decreasing steadily to 0 and with Xi = 1. Consider

the sequence {X„C„} and place its members in P as follows: all the

points qn coincide with the origin 0, X„C„ lies on the positive x-side

of the y-axis and is tangent to it at O, and X„+iC„+i is inside X,»C». To

satisfy the last condition let 0<\n<\n-i8n/yn. Let P„ be a plane

through the y-axis at an angle 9n to P. The sequence {0n} is steadily

decreasing to 0 and 6i = ir/2. Transfer X„C„ from P to P„ by rotating

it through an angle 8n about the y-axis, and denote the result by

\nC„. Now select {$n} and {Xn} so that a surface L can be con-

structed to satisfy these conditions: Lf~\Pn = ^nCn, L possesses at the

origin the unique supporting plane P, and the intersection of L with

the OAZ-plane is a curve whose radius of curvature at 0 is either

vanishing or infinite. Intersect L with the OFZ-plane and let M be

the cap based on 0 YZ and containing the curves X»C». Complete M

to a surface 5 as follows. The intersection of 5 and the plane z = a, on

the negative x-side, is an ellipse with axes aid) and bia). These

ellipses are determined so that a(a)/6(a) tends to 0 together with a,

and P is the unique supporting plane of 5 at the origin. Now the sur-

face 5 and the origin 5 satisfy the conditions of the theorem: 5 is

universal by the construction of M, so that C(s)= It; on the other

hand, the curvature conditions on 5 imply that the plane sections
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of 5 at 5 possess two radii of curvature one of which (in the OYZ-

plane) is 71 while the other one (in the OXZ-p\a.ne) is either zero or

infinite. This is easily seen to preclude the existence of any parallel

limit section at s. Therefore Gp(s) = 0.

4. The definitions of 6(5) and 63,(5) suffer from the dependence of

the limit sections on the sequences of intersecting planes. A point s

of a surface S will be called ordinary if Gp(s) = {\C} for a fixed C in

11, that is, if the parallel limit sections at s do not depend on the

choice of the sequence of the intersecting planes. A surface is ordinary

if all its points are ordinary.

Theorem 4. There exists an ordinary surface with a universal point-

First it will be shown that for any C„ in the previously used basis

{C„} there exists a surface of class C°° at all points except for one

point 5 for which &P(s) = {XCn}. Let K be a cone with the directrix

C„. Transform K into A7 by a compression in the axial direction. Let

the compression be sufficiently strong near the vertex of K to send it

into a point s on N, at which N possesses a unique supporting plane.

Also, let N be of class C°° everywhere except at s. On N take now any

cap containing s and complete it to a surface which is of the class

C°° everywhere except at s.

Let Si be the unit sphere about the origin and let A be an arc of a

great circle, terminating at the north pole 5 of Si. On A let \sn}

be a sequence of points tending steadily to 5. About sn as centre draw

on Si a small circle Dn of radius p„. The radii are such that no two cir-

cles intersect. Let V be the remainder of Si after the removal of the

spherical caps based on all the P„'s. For the curve Cn of the previously

used basis construct a cap Vn based on Dn and of class C°° everywhere

except for one point vn for which Qp(vn) = {Xd}. As shown in the

preceding paragraph, this can be done. Complete V to a surface S

by placing Vn over Dn on V. Moreover, let S be of class C°° at all

points except at the ordinary points vn and at their limit 5. Let h(x)

be the deformation function at 5 for the deformation of Si into S.

It is defined in the same way as in the proof of Theorem 2. Now

select the sequences {sn} and (p„) so that h(x) tends to 0 together

with x. The surface S is ordinary at all points: at the sequence {vn\

by construction, at 5 by the condition on h(x), and at all other points

by the property of C°°. On the other hand, it easy to show that s is a

universal point.

5. Many other similar questions could be raised. Can the set Q(s)
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be empty? Does there exist an ordinary ^-universal surface? What

does the condition 6(s) = {XC}, C fixed, imply? While for a surface

of class C2 a parallel limit section is an ellipse and for a surface of

class C3 any limit section is an ellipse, can a surface of class C2 possess

a nonelliptical limit section? What are the invariant properties, if

any, of the set C(s) and QPis) under the change of j on the surface,

and under the transformations of the surface itself?
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