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ON SPACES WHICH ARE NOT OF COUNTABLE
CHARACTER

J. M. MARR

It is well known that the unit interval I has a countable base and

the fixed point property. By considering the maps g(x) =x2 and h(x)

— 1 —x, one sees that there is no x£J such that for every continuous

map/: I—>I, xG/(I) implies/(x) = x.
In Theorem 1, it is shown that if A is a closed, non-null proper sub-

set of a locally connected, compact Hausdorff space X which has a

countable base, then there exists a continuous map /: X—>X such

that AC\f(X) is not contained in A(~\f(A). Theorem 2 shows that

certain nondegenerate topological spaces X contain proper subsets

M such that for every continuous map/: X^>X, Mr\f(X)CMC\f(M).

That is, for each of these spaces X and every continuous map

f:X->X, xGMC\f(X) implies f-x(x)C\M^0. The corollary is of
interest in that, if X satisfies the hypotheses of Theorem 2 and M

consists of a single point, then a fixed point of some of the maps

/: X—>X is located.

Theorem 1. Suppose X is a connected, locally connected, compact

Hausdorff space which has a countable base. If A is any non-null, closed,

proper subset of X, then there exists a continuous map f: X—>X such

that Ar\f(X)\AC\f(A)^0.

Proof. Since X is compact Hausdorff and has a countable base,

X is metrizable. Hence X is arcwise connected. Let y£X\A. Since
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X is normal, there exists a continuous map h such that &(x) =0 for

xEA, hiy) = 1, and 0^^(x) ^1 for each xEX. Since X is arcwise con-

nected, there is an arc C connecting y and A. Now C contains a sub-

arc Ci, such that yGCi and CiC\A is a single point x0. Then there is a

homeomorphism g such that g([0, l]) = &, g(0) —y, and g(l)=x0.

Consider the continuous map/ = gh. Clearly/: X—>X and x0EA C\fiX).

But since x0^y and fiA)=y, x0Ef(A). Hence XoEAC\f(A); and

f = gh is the required map.

In the following let M consist of the set of all points x£X such

that if x is a limit point of {y„} where UyaC-X\x, then {ya} contains

uncountably many distinct points. It may be noted that X does not

satisfy the first axiom of countability at points of M.

Theorem 2. Let X be a connected Hausdorff space which contains a

non-null set M such that M = M, and Mt^X. Suppose also that each

point of X\M has a countable base. Then for every continuous map

f:X-*X, Mr\f(X)EMr\f(M).

Proof. Let/be a continuous function such that/ maps X into X.

If MC\f(X) =0, then MC\f(X)EMr\f(M). On the other hand, sup-
pose xEMC\f(X) and x£/(M). Now x is a limit point of X\x, for

otherwise X would not be connected. Since x(£/(M), f~1ix)C.X\M.

Suppose there exists zEf~*ix) such that every neighborhood of z

intersects X\f~lix). Since X\M is open and zEX\M, there exists a

countable set { Uniz)} of neighborhoods of z such that (")„_! t7n(z) =z,

and U„iz)EX\M for each re. In each l7„(z) there exists a point u„

such that unEX\f_1ix). Now fiun)EX\x for each re; and, by the

continuity of/, x is a limit point of the set U£.i/(w„). But U"_i/(m„)

does not contain uncountably many distinct points. Thus a contra-

diction has been reached. Suppose that for every zEf"lix), there

exists a neighborhood Z7(z) such that Uiz)C\{X\f~1ix)} =0. Clearly

Uiz) may be taken so that £/(z) CX\M. Then C/(z)C/-1(*) for every

z£/_1(x), and f~*ix) is open in X. Since x is closed in X, f~*ix) is

closed in X. Therefore f~lix)=X and /(X)=x. But fiM)EfiX);

hence, /(Af)=x. But this contradicts the assumption that x(£/(M).

Corollary. // X is a nondegenerate connected Hausdorff space in

which M is a single point x0, then for every continuous function f such

that f: X-^X and x0EfiX),fix0) =x0.

Proof. By Theorem 2, xoC/O^o). Since /(x0) is a single point,

*o=/(*o).
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