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LEMMA 2'. Let L be a distributive lattice with 0 element and with finite
bounded chains. Ly may be imbedded in the discrete cardinal product of
as many copies of L as there exist join-irreducible elements in L.

THEOREM 3. Let L be a lattice with O element and with finite bounded
chains. All join-endomorphisms of L form a distributive lattice if and
only if L is distributive.
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LINEAR COMPLETENESS AND HYPERBOLIC
TRIGONOMETRY

CURTIS M. FULTON

In this paper we show the uniqueness of the relation between a
segment and its angle of parallelism as derived from a model. Upon
generalizing this relation hyperbolic trigonometry follows in a re-
markably simple way.

To introduce proper terminology [5, pp. 11-28] let = denote an
axiom system, that is a certain set of axioms together with the un-
defined technical and logical or universal terms used to state the
axioms. We define the terms interpretation and model in the usual
fashion. It is useful to make a clear distinction between the following
three concepts. (1) A Z-statement is a meaningful expression, not
necessarily true, in the technical and universal terms of Z. (2) A
T-Z-statement is a true Z-statement in the sense of being logically
derivable from Z. (3) If I denotes an interpretation of Z, then an
I-Z-statement is a Z-statement holding for the model which results
from the interpretation I.

For the purpose of this paper let Z be the postulate system of Hil-
bert [3, pp. 2-30] with the Euclidean axiom of parallelism replaced
by the characteristic postulate of hyperbolic plane geometry [6,
p. 66]. Some authors have used models to find I-Z-statements [1,
§39-117; 2]. Such a procedure, however, may be objectionable [1,
§118]. Conceivably an I-2-statement could be made which is not a
T-Z-statement, but is merely a property of a particular model. In
other words, it might be possible to find contradictory I-Z-statements
in two different models. Clearly, if this happens it indicates that our
system Z is not complete [5, pp. 33-36]. Any I-Z-statement that is
not a T-Z-statement would still be compatible with the axioms of Z.

Presented to the Society April 19, 1958; received by the editors February 28, 1958.



1958] LINEAR COMPLETENESS AND HYPERBOLIC TRIGONOMETRY 727

The special Z-statement to be considered here is the relation be-
tween a distance and its corresponding angle of parallelism [4, pp.
143-144]. To avoid ambiguity we assign the unit of length to a seg-
ment whose angle of parallelism is 2 arc tan e~!. Assume now that
for a prescribed segment, not of length one, two different angles of
parallelism are found in two models. This would be the situation,
suggested above, of two contradictory [-Z-statements. We propose
to show that two different formulas for the angle of parallelism are
impossible in a geometry based on Z. To this end, let x denote the
given segment perpendicular to a line M N, 0 the smaller, and 6’ the
larger of the angles of parallelism. If 6’ were the true angle, lines
passing through the proper end point of x and making angles greater
than or equal to # and less than 6 with x, would intersect MN [6,
p. 67]. The line M N would then have more points than in the case
of 6 being the angle of parallelism. This contradicts the postulate of
linear completeness [3, p. 30]. Hence the conflicting I-Z-statements
on the angle of parallelism cannot both be compatible with Z. The
functional relationship between x and § must be unique and the same
in all models. It is consistent with the axioms of Z; whether it is a
T-Z-statement, that is provable from these axioms without additional
assumptions is not of concern to us here.

The relationship in question derived from two different, though
closely related, models [1, §74; 6, pp. 214-216] is e=*=tan 6/2. We
admit obtuse angles for x negative [6, p. 77] for the purpose of the
present paragraph. In order to generalize this formula we consider
two parallel lines which intersect a third line in two points P, Q
such that distance PQ =z. Let 6 and ¢ be the oblique angles in the tri-
angle determined by P, Q, and the ideal point of the given parallels
[6, pp. 71-75]. The distances corresponding to these angles, regarded
as angles of parallelism, are denoted by x and y. There is exactly one
line, perpendicular to PQ and parallel to the first one of the given
parallel lines. Its distance from P is equal to x. Because of the transi-
tivity of parallelism [4, p. 139] this line perpendicular to PQ is also
parallel to the second one of the given parallels and its distance from
Q is necessarily . Since z=x+7y, we conclude that

(1) €% = tan 6/2 tan ¢/2.

In (1) z is positive for the angles chosen. Relation (1) is readily
changed to

1 4+ cos @ cos
(2) cosh z = ——————-3 .
sin @ sin ¢
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At this point let the customary notation apply to a right triangle
ABC. Through the vertex B we draw the two parallels to line 4C and
designate by 0 the acute angle of parallelism corresponding to side a.
Using (2) with respect to the hypotenuse ¢ and the parallels in either
sense we obtain

14 cosacos (8 + B)
sin a sin (8 + B) ’

3 cosh ¢

1 — cosacos (8 — B)

4) cosh ¢ = — -
sin « sin (0 — B)

Equating (3) and (4) we have cos «a sin §=sin §. By means of a

suitable formula for the angle of parallelism [6, p. 151] this takes the

form

(5) cos a sech ¢ = sin 8.

Hence by analogy,

(6) cos B sech b = sin a.

We now expand (3), use formulas for 8, and apply (5). Thus,

@) cosh ¢ = cosh a cosh b.

It is easily seen that (5), (6), (7) allow us to derive the remaining
formulas for the right triangle.
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