B PARACOMPACT DOES NOT IMPLY BI PARACOMPACT1

EDWARD FADELL

As is well known the category of paracompact spaces is important in algebraic topology and the theory of fiber spaces. The following question arises naturally. If a space (Hausdorff space) B is paracompact, is the space of paths B^I (I = [0, 1]), with, of course, the compact-open topology, also paracompact? The following simple example answers the question in the negative.

Let X denote the set of real numbers with the half-open interval topology 1. This now well-known space has the following properties: regular, Lindelöf (hence paracompact [2], hence normal [3]) and totally disconnected. It is also known that $X \times X$ is not normal [1] (hence not paracompact). Since X^I and X are homeomorphic, X^I is paracompact so a slight adjustment must be made to provide the counter-example. Let C(X) denote the cone over X, i.e., in $X \times I$ identify $X \times \{1\}$ to a point, thus obtaining C(X). Then, if $p: X \times I$ $\rightarrow C(X)$ is the identification map, C(X) is topologized by employing the weakest topology which renders p continuous. Since $X \times I$ is Lindelöf and regular, it follows that C(X) is Lindelöf and regular, hence paracompact. What we will show now is that $C(X)^I$ is not paracompact. The idea is the following: X appears in C(X) as a closed subset, namely the "base" of the cone. Therefore $X \times X$ appears in $C(X) \times C(X)$ as a closed subset and hence $C(X) \times C(X)$ is not paracompact. Thus, if we can imbed $C(X) \times C(X)$ in $C(X)^I$ as a closed subset, it will follow that $C(X)^I$ is not paracompact.

We leave to the reader the simple proofs of the following lemmas.

LEMMA. Let Y denote a space and $F: Y \times I \rightarrow Y$ a contraction of Y to $y_0 \in Y$, i.e., $F_0 = 1$ and $F_1 = y_0$. Then the mapping $\overline{F}: Y \rightarrow Y^I$ given by $\overline{F}(y)(s) = F(y, s)$, $0 \le s \le 1$, $y \in Y$, is an imbedding of Y in Y^I whose image $\overline{F}(Y)$ is closed in Y^I .

LEMMA. Let B and Y denote spaces and fix $b \in B$. Furthermore, let $\tilde{B} = \{\omega \in B^I : \omega(1) = b\}$. Let $f: Y \to \tilde{B}$ be a map such that f(Y) is closed in \tilde{B} (hence in B^I). Define a map $f^2: Y \times Y \to B^I$ by

$$f^{2}(y, y') = f(y) \circ f(y')^{-1}$$

where \circ denotes multiplication of paths. Then, $f^2(Y \times Y)$ is closed in B^I .

Received by the editors May 31, 1958.

¹ This note was sponsored in part by the National Science Foundation under Grant NSF G-4223.

Now, let $F: C(X) \times I \rightarrow C(X)$ denote the usual contraction of C(X) to its vertex, i.e.,

$$F[p(x, t), s] = p((x, t + s - st)).$$

Applying the above lemmas with Y = C(X), B = C(X), F the contraction of C(X) to its vertex and $f = \overline{F}$, we see that $\overline{F}^2 \colon C(X) \times C(X) \to C(X)^I$ has a closed image, i.e., $\overline{F}^2(C(X) \times C(X))$ is closed in $C(X)^I$. Thus, to complete the proof that $C(X)^I$ is not paracompact, it suffices to show that \overline{F}^2 is an imbedding. This fact, however, is immediate as follows: Define a map $\phi \colon C(X)^I \to C(X) \times C(X)$ by setting $\phi(\alpha) = (\alpha(0), \alpha(1))$. Thus $\phi \mid \overline{F}^2(C(X) \times C(X))$ is the required inverse for \overline{F}^2 .

THEOREM. C(X) is paracompact but $C(X)^I$ is not paracompact.

REMARK. Thus, for example, we see that if one is considering maps $f: X \rightarrow Y$ in the category of paracompact spaces, the usual technique of replacing f by a fiber map may take one outside of this category.

BIBLIOGRAPHY

- 1. R. H. Sorgenfrey, On the topological product of paracompact spaces, Bull. Amer. Math. Soc., vol. 53 (1947) pp. 631-632.
- 2. E. Michael, A note on paracompact spaces. Proc. Amer. Math. Soc. vol. 4 (1953) pp. 831-838.
- 3. J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures Appl. vol. 23 (1944) pp. 65-76.

THE UNIVERSITY OF WISCONSIN