A SUFFICIENT CONDITION THAT A MONOTONE IMAGE OF THE THREE-SPHERE BE A TOPOLOGICAL THREE-SPHERE

O. G. HARROLD, JR.¹

1. A continuous transformation of one space onto another is called monotone provided the complete inverse set for each point of the image space is connected. A monotone image of a circle is a simple closed curve or a point. A monotone image of a 2-sphere is a configuration known as a cactoid, i.e. a peano space in which every true cyclic element is a topological 2-sphere. R. L. Moore has shown that if a monotone transformation of a 2-sphere has the additional property that no inverse set separates the 2-sphere, then the image space is again a topological 2-sphere or a point [3]. In the case of the three-sphere, S^3 , as one would expect, the situation is more complicated and extra conditions need to be imposed if the image space is to be expected to look like an S^3 .

A recent example of R. H. Bing [1] shows that if a monotone transformation on S^3 has the property that for each point of the image the complement of the inverse image is an open 3-cell, the image may not be a topological S^3 , thus answering a long standing conjecture. By studying this example and profiting by conversations with Professor Bing the author was led to the following theorem.

2. Theorem 1. Let $M = f(S^3)$, where f is a monotone, continuous map such that (i) if $Y = \{y \in M | f^{-1}(y) \text{ does not reduce to a point}\}$, then given $y \in \overline{Y}$, and $\epsilon > 0$, there is a topological 2-sphere K in $S(y, \epsilon)$ separating y and $M \setminus S(y, \epsilon)$ such that K does not meet \overline{Y} . Then M is a topological 3-sphere.²

PROOF. Let $\epsilon_1 > \epsilon_2 > \cdots \to 0$ and $\sum \epsilon_i < +\infty$. The set \overline{Y} is totally disconnected. Hence $\overline{Y} = Y_1 \cup \cdots \cup Y_{n_1}$ where Y_i is closed, $Y_i \cap Y_i = \prod$ and $\delta(Y_i) < \epsilon_1/4$. Suppose $\eta_1 = \min \rho[Y_i, Y_j], i \neq j$. De-

Presented to the Society June 21, 1958; received by the Editors March 21, 1958.

¹ Fellow of the John Simon Guggenheim Memorial Foundation. Research also supported by the National Science Foundation, NSF, G-2793.

 $^{{}^{2}\}overline{Y}$ = closure of Y.

 $^{^3}$ $\delta(Y)$ represents the diameter of Y, $S(y,\epsilon)$ is the set of points each of whose distance from y is less than ϵ . The symbol ρ represents the metric of the space concerned. It will be clear whether ρ refers to M or S^3 by noting in which space \underline{th} e sets are given.

If K is a topological 2-sphere in $M \setminus \overline{Y}$, the complement of \overline{Y} in M, Int $K = f[\text{Int } f^{-1}(K)].$

fine $\epsilon_i' = \min(\epsilon_1/4, \eta_1/3)$. A finite number of topological 2-spheres K_1', \dots, K_{m_1}' are found, by use of (i), such that for $i = 1, \dots, m_1$,

$$\delta(K_i') < \epsilon_1';$$

(2) U Int
$$K'_i \supset \overline{Y}$$
;

$$(3) K_i' \cap \overline{Y} = \square.$$

The first set of operations is designed to replace the spheres K'_1, \dots, K'_{m_1} by a set $\tilde{K}'_1, \dots, \tilde{K}'_{p_1}$ that enjoy properties similar to (1), (2), (3) and the further requirement

$$\tilde{K}'_i \cap \tilde{K}'_j = \square, \qquad i \neq j.$$

The set of spheres $\widetilde{K}'_1, \dots, \widetilde{K}'_{p_1}$ may be found as follows. Since f^{-1} is topological on $K'_i, L_i = f^{-1}(K'_i)$ is a topological 2-sphere. Since $\rho[L_i, f^{-1}\overline{Y}] > 0$, we may apply the Bing approximation theorem [2] to find a polyhedral 2-sphere P_i as near L_i as we please so that P_i contains in its interior precisely those components of $f^{-1}\overline{Y}$ that are interior to L_i . By doing this for each i, we obtain a set of polyhedral 2-spheres

$$P_1, \cdots, P_{n_1}$$

It may be supposed further that $P_i \cap P_j$ is a finite collection (possibly null) of pairwise disjoint simple closed curves, none of which may be removed by an arbitrarily small deformation of P_i or P_j . In addition,

(2') U Int
$$P_i \supset f^{-1}(\overline{Y})$$
.

$$(3') P_i \cap f^{-1}(\overline{Y}) = \square.$$

We first describe how to find a set of polyhedral 2-spheres $\tilde{P}_1, \dots, \tilde{P}_{p_1}$ such that conditions (2'), (3') and the following hold

$$\tilde{P}_i \cap \tilde{P}_i = \square.$$

Suppose C_1, \dots, C_q are the components of $P_1 \cap P_2$. If q = 1, let C_1 divide P_1 into U_1 , V_1 and C_1 divide P_2 into U_2 , V_2 . Then P_1 and the closure of the component $(V_2 \text{ say})$ of $P_2 \setminus C_1$ in the exterior of P_1 together with the appropriate disk $(U_1 \text{ or } V_1)$ gives a pair of 2-spheres P_1, P'_2 that covers the same part of $f^{-1}(\overline{Y})$ that $P_1 \cup P_2$ does, neither P_1 nor P'_2 meets $f^{-1}(\overline{Y})$ and, by a slight deformation $P_1 \cap P'_2 = \square$.

If q > 1, at least one of C_1, \dots, C_q , say C_1 , will not separate C_2, \dots, C_q on P_1 . (Of course C_1 may separate C_2, \dots, C_q on P_2 , but that is irrelevant.) By replacing P_2 by 2 new polyhedral 2-spheres meeting along a disk on P_1 , we again have covered the same part of

 $f^{-1}(\overline{Y})$ and by a pair of slight deformations obtain 3 polyhedral 2-spheres

$$P_1, P_2', P_2''$$

such that the number of components of $P_1 \cap P_2'$ or $P_1 \cap P_2''$ is less than q.

Continuing, we obtain, after a finite number of such operations a collection of polyhedral 2-spheres

$$\tilde{P}_1, \cdots, \tilde{P}_{p_1}$$

such that

(2") U Int
$$\tilde{P}_i \supset f^{-1}(\overline{Y})$$
.

$$\tilde{P}_i \cap f^{-1}(\overline{Y}) = \square.$$

$$\tilde{P}_i \cap \tilde{P}_j = \square, \ i \neq j.$$

Define $\tilde{K}_i = f(\tilde{P}_i)$. We note that under the steps made in forming \tilde{P}_i , or, correspondingly, \tilde{K}_i , that the diameters of the spheres replacing K_j may be greater than that of K_j . However, since $\epsilon_1' < \eta_1(1/3)$, the definition of η_1 and the triangle inequality show that $\delta(\tilde{K}_i) < 3\epsilon_1/4 < \epsilon_1$. Hence $\tilde{K}_1, \dots, \tilde{K}_{p_1}$ satisfy

$$\delta(K_i) < \epsilon_1:$$

$$(2) \qquad \qquad \mathsf{U} \; \mathsf{Int} \; K_1' \supset \overline{Y}:$$

$$\tilde{K}_i' \cap \overline{Y} = \square,$$

$$\tilde{K}'_i \cap \tilde{K}'_j = \square, \ i \neq j.$$

To $\epsilon_2 > 0$, write $Y_i = Y_{i,1} \cup \cdots \cup Y_{i,n_2}$, where $Y_{i,j}$ is closed, $Y_{i,j} \cap Y_{i,j'} = \square$ and $\delta(Y_{i,j}) < \epsilon_2/4$. Put

$$\eta_2 = \min \rho [Y_{i,j}, Y_{i',j'}], \rho \left[Y_{i,j}, \bigcup_{1}^{p_1} \widetilde{K}_i \right].$$

Let $\epsilon_2' < \epsilon_2/4$, $\eta_2/3$. By the hypotheses (i) there is a finite collection of topological 2-spheres in $M, K_1^2, \dots, K_{m_2}^2$ such that

$$\delta(K_i^2) < \epsilon_2':$$

$$(3) K_i^2 \cap \overline{Y} = \square.$$

By the choice of ϵ_2' , $K_i^2 \cap \tilde{K}_j^1 = \square$. By modifications of the K_1^2 , \cdots , $K_{m_2}^2$ precisely as above at the first stage we arrive at another set of spheres \tilde{K}_1^2 , \cdots , $\tilde{K}_{p_2}^2$ such that

$$\delta(\tilde{K}_{i}^{2}) < \epsilon_{2},$$

$$(3) K_i^2 \cap \overline{Y} = \square,$$

$$(4) K_i^2 \cap K_j^2 = \square, \ i \neq j$$

$$(5) K_i^1 \cap K_j^2 = \square.$$

The general step is now clear.

To $\epsilon_n > 0$ we find a finite set of topological 2-spheres

$$\tilde{K}_{1}^{n}, \cdots, \tilde{K}_{p_{n}}^{n}$$

such that

$$\delta(\tilde{K}_i^n) < \epsilon_n,$$

$$\tilde{K}_{i}^{n} \cap \overline{Y} = \square,$$

$$\tilde{K}_{i}^{n} \cap \tilde{K}_{j}^{n} = \square, \ i \neq j$$

(5)
$$\tilde{K}_{i}^{n} \cap \tilde{K}_{j}^{p} = \square, \ p < n, \text{ all } i, j.$$

3. Let F'_1, \dots, F'_{p_1} be p_1 disjoint cubes (topological 2-spheres) with centers on the x-axis and faces parallel to the co-ordinate planes. We take the cubes congruent to one another for convenience. Let $F_1^2, \dots, F_{p_2}^2$ be a similar set of cubes of smaller size so that

$$F_i^2 \subset \operatorname{Int} F_i'$$

if and only if

$$K_i^2 \subset \text{Int } K_i'$$
.

Continuing, for each n we have

$$F_1^n, \cdots, F_n^n$$

a collection of pairwise disjoint cubes so that

$$F_i^n \subset \operatorname{Int} F_i^{n-1}$$

if and only if

$$K_i^n \subset \text{Int } K_i^{n-1}$$
.

Without loss we may require that $\delta(F_{\bullet}^{n}) < 1/n$.

The following lemma is stated without proof.

LEMMA. If Q_1, \dots, Q_n are disjoint polyhedral 2-spheres in S^3 , no one interior to any other, and if Q_0 is a large polyhedral cube containing Q_1, \dots, Q_n in its interior, the closed domain bounded by Q_0, Q_1, \dots, Q_n is tame. Further, any two domains so formed in this way are homeomorphic.

4. Let P^0 be a large cube in S^3 containing $\tilde{P}_1, \dots, \tilde{P}_{p_1}$ in its interior. Then $K^0 = f(P^0)$ is a 2-sphere in M containing $\tilde{K}'_1, \dots, \tilde{K}'_{p_1}$ in its interior. Let M_0 be the region in M exterior to K^0 . Then \overline{M}_0 is homeomorphic to $S^3 \setminus \text{Int } P^0$ under f^{-1} . Hence there is a homeomorphism h_0 from \overline{M}_0 to $S^3 \setminus \text{Int } F_0$. Let $M_1 = \text{region in } M$ bounded by $K^0 \cup \bigcup_{1}^{p_1} \tilde{K}'_1$. Then, by the lemma, \overline{M}_1 is homeomorphic to the region in S^3 bounded by $F^0 \cup \bigcup_{1}^{p_1} F'_1$. Let h_1 be a homeomorphic extension of h_0 from \overline{M}_0 to $\overline{M}_0 \cup \overline{M}_1$. The next step is similar, except that M_2 is a union of a finite number of regions bounded by the sets

$$\bigcup_{1}^{p_1} \tilde{K}_i' \cup \bigcup_{1}^{p_2} \tilde{K}_i^2.$$

However, these regions are in 1-1 correspondence with the number of regions bounded by

$$\bigcup_{i=1}^{p_1} F_i' \cup \bigcup_{i=1}^{p_2} F_{i}^2,$$

hence, by the lemma, the extension of h_1 from $\overline{M}_0 \cup \overline{M}_1$ to $\overline{M}_0 \cup \overline{M}_1$ $\cup \overline{M}_2$ can be carried out.

Continuing, a sequence of homeomorphisms h_0 , h_1 , h_2 , \cdots is defined so that each is an extension of the preceding and

$$h(x) = h_n(x)$$

maps $M \setminus \overline{Y}$ homeomorphically onto the complement of a Cantor set X in S^3 .

Since nested sequences of connected sets in $M\backslash \overline{Y}$ correspond to nested sequences of connected sets in $S^3\backslash X$, it is easy to see that h and h^{-1} are both uniformly continuous, hence the extension \tilde{h} of h carries M homeomorphically onto S^3 .

References

- 1. R. H. Bing, A decomposition of E^3 into points and tame arcs such that the decomposition space is topologically different from E^3 , Ann. of Math. vol. 65, no. 3 (1957) pp. 484-500.
- 2. R. H. Bing, Approximating surfaces with polyhedral ones. Ann. of Math. vol. 65, no. 3 (1957) pp. 456-483.
- 3. R. L. Moore, Concerning upper semi-continuous collections of continua. Trans. Amer. Math. Soc., vol. 27 (1925) pp. 416-428.

THE UNIVERSITY OF TENNESSEE AND

THE INSTITUTE FOR ADVANCED STUDY