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1. Introduction. If 5 is a 2-sphere regularly imbedded (see below

for definition) in 3-space P3, the union of 5 and the bounded com-

ponent of the complement of S1 is a 3-cell (this component will be

called the interior of S). If C is the homeomorphic image of a circle

lying on S, it is clear there is a topological disc D whose interior

points lie in the interior of S and whose boundary is C. Similarly if

Ci, C2, • • • , C„ are pairwise disjoint homeomorphic images of a cir-

cle all lying on S, then there are pairwise disjoint discs Pi, D2, ■ • ■ ,

Dn with boundaries Ci, Ct, • • • , Cn and whose interior points are

interior to 5.

In this paper a generalization of this result is proved. We define a

certain class of imbeddings of a closed connected 2-dimensional sur-

face M in E3. For this class of imbeddings if &, • • • , Cn are pairwise

disjoint homeomorphs of a circle, each one separating M into two

components, then there are pairwise disjoint discs 77, • • • , Dn with

boundaries &, • • • , C» and whose interior points are interior to M.

2. Definitions. By E3 we mean euclidean 3-space together with a

fixed coordinate system (x, y, z). E2 will be the subset of E3 consisting

of the points with z = 0. P2 will have the induced (x, y) coordinate

system. S will be the unit 2-sphere in P3, that is the subset defined

by the equation x2+y2+z2 = l. We assume 5 has the usual differen-

tial structure and an orientation induced by that on P3.

C and D will be the subsets of P2 defined respectively by the equa-

tions x2+y2 = l and x2+y2^l. D is assumed orientated as P2 and C

has the orientation coherent with that of D. In certain connections

we will use polar coordinates reie lor (x, y) when dealing with points

of P.

T will denote the torus in P3 defined by the parametric equations

x = (2 + cosd>) cos0,y = (2 + cosd>) sin0,z = sin<p (0 ^0^2ir; 0 ^d>^2ir).

T will be assumed to have the usual differential structure and an

orientation coherent with that of P3. T* will be the subset of T con-

sisting of those points (x, y, z) with x^3/2. It is given the differen-

tial structure and orientation of P. T* is the topological boundary of

T*. It is the intersection of T* with the plane x = 3/2 and is homeo-

morphic with C.

If B is one of the above defined spaces, by a regular mapping of
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B into E3 we mean a differentiable homeomorphism /: B—>E3 such

that the jacobian has maximal rank at each point. Unless otherwise

noted, all mappings considered will be regular in the above sense. The

term "mapping" will be used for "regular mapping" when there is

little danger of misunderstanding.

It will be convenient to identify a point p of E3 with the vector

from the origin to p. With this convention the points kp (k a real

number) and p+q are defined in the obvious fashion. The length of a

vector v will be denoted by \v\. |p| will be the distance from p to

the origin.

Definition 1. By a circle in E3 we mean a mapping/: C—>£3. The

image set/(C) will also be called a circle.

Definition 2. By a disc in E3 we mean a mapping g: D—>E3. The

image set g(D) will also be called a disc.

Definition 3. A circle /(C) is said to be the boundary of a disc

g(D)iig\D=f:C.
Definition 4. Let / be the interval [0, 1 ]. By an interval we mean

any mapping/: /—»£3. The point setf(I) will also be called an inter-

val.

We are now in a position to define the class of surfaces in E3 which

is studied in our theorem.

Definition 5. Let e: S—>E3 be a mapping and let |<: D—*e(S)

(i = l, ■ • • , n) be mappings such that gi(D)C\gj(D) = 0 (i^j). Let

hi'. F*—>£3 (i=l, ••■,«) be mappings such that hi(T*)f\hj(T*)
=4>(i9^j), hi(T* — t*) is in the unbounded component of the com-

plement of e(S) and hi(f*) = f,(C). The normal vectors to e(S) and

hi(T*) will be assumed continuous across g((C). The set

e(S) U U hi(T*) - U gi(D - C)
i-l i-l

will be called a surface of class A.

In the remainder of the paper Mn will denote a surface of class A

with n "handles," that is a sphere with n holes and images of F*

attached to these holes as in Definition 5. The bounded component

of the complement of Mn will be called the interior of Mn.

The point set hi(T*)VJgi(D) is a topological torus for each i. It

is not smoothly imbedded in E3, however, because of the edge g.-(C).

3. The main result. We have the following

Theorem. Let {/.(C)} (* = 1, • • • ,m) be a collection of circles with

fi(C)CMn andfi(C)r\fj(C)=(f> (i^j). Suppose each /,(C) is homolo-
gous to zero in Mn. Then there are discs gi(D) (i = 1, • • • , m) such that
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gi\C=fi:C and g\D — C is interior to  M„.   Further gi(D)C\gj(D)

We remark that for a circle on Mn to be homologous to zero is

equivalent to separating Mn into two connected pieces.

The main argument of the proof will be preceded by further defini-

tions and some lemmas.

4. Proof of some lemmas. Two circles/"(C) and f\C) will be called

isotopic in P3 if there is a differentiable mapping P: CXI—^E3 such

that P|CX0=/°: C and F\CXl=f: C and for each tEI, P|CX*is
a circle. P need not be a regular mapping in the sense we have defined

above. The isotopy of two discs is defined similarly. /°(C) and fl(C)

are isotopic in Mn if F(CXI)CMn.

Let {fi(C)} (i = 1, • • • , m) he a set of pairwise disjoint circles on

Mn. {fi(C)} is isotopic to the set of circles {//(C)} if there are iso-

topies Fi-. CXl^Mn with P,| CX0=/?: C, F,-| CXl=f\: C and for
each t, the set of circles {P,-| CXt} is pairwise disjoint.

Lemma 1. Let {f?(C)} and {fl(C)} (i = l, ■ ■ • , m) be two pairwise
disjoint sets of circles on M„ which are isotopic on Mn. Suppose there

is a pairwise disjoint set of discs {g°(D)} such thatff(C) is the boundary

of gi(D) (i = l, ■ ■ ■ , m) and such that UJli (&°(P)-&°(C)) is in the
interior of Mn. Then there is a pairwise disjoint set of discs {g\(D)}

with boundaries {f}(C)} such that U^.! (g\(D) —g](C)) is in the interior

ofM„.

Proof. From Whitney [2, p. 667], there exists a vector field N(p)

which is a differentiable function of p and which for each p sticks

into the interior of Mn (N(p) is to be thought of as originating at p).

It is clear the N(p) can be chosen of equal length and short enough

so that the equation p+sN(p) =p'+s'N(p') implies p=p' and s=s'

il O^s, s'^.1. Clearly the g°(D) may be chosen so that g?((l —s)p)

=f?(P)+sN(f?(p)) 7 = 1, ■ ■ ■ ,m) for all pEC and all 0^:g25 for
some 5, 0<5<l/2. Again by a suitable choice of 5 we may assume

the only points of g?(P) within a distance 25j N(p)\ of Mn are those

of the form g?((l -s)p) where pEC and 0^*^25.

Suppose then P,-: CXT^-M* is an isotopy of fi(C) into f 1(C). De-
fine mappings g{: D—>E3 as follows.

gi(reie) = gi(reie) for 0 g r ^ 1 - 25.

gi(reie) = Fi(e«, t(r)) + m(r)N(F(ei\ t(r)))

where t(r) =ar*+br2+cr+d, m(r) =Ar3+Br2 + Cr+D and
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a = - 2/53, A = - 4/5s,

J = (6 - 95)/53, B = (12- 185)/52,

c = (-6 + 185 - 1252)/53, C = (-12 + 365 - 2552)/52,

d = (2 - 95 + 1252 - 453)/53, Z> = (1 - 185 + 2652 - 1253)/52

for l-25^rgl-5,

I ("") = fl(e") + (1 - r)N(f1i(ei'))

for 1-S^r^l.

The equations (*) define a set of discs satisfying the conditions of

Lemma 1. It can be checked directly that gi is a continuously differ-

entiable mapping whose jacobian is of maximum rank everywhere

(i.e. gi is an immersion of D into F3). We must show that g,- is a

homeomorphism, the {gi(D)} are pairwise disjoint and gt\D — C is

contained in the interior of M„.

The restriction of gi to points reiS with O^r^l— 25 is a homeomor-

phism and the images are pairwise disjoint since on this subset of D,

gi coincides with g,-. The only points of gt(D) within 25|z>(p)| of Mn

(as measured along the segment p+\v(p) passing through the point

p) are those of the form gi(rei6) with 1— 25^r^l. The set of points

of {gi(D)} at a given distance from Mn along v(p) is a translation

(without intersection) of a set of curves {Fi|CXi}(0^^1). But

these curves are circles and are pairwise disjoint. From this it is

evident the {gi(D)} satisfy the first two conditions above. That

U<li gi(D — C) is contained in the interior of Mn is obvious. This

proves Lemma 1.

Lemma 2. Let g'(D) be a disc contained in the interior of a disc

g"(D). Let N(p) be a continuously differentiable vector field which for

each pEg"(D) has a nonzero projection on the normal to g"(D) at p.

Then there is a disc g(D) with g(D)C\g"(D) =g'(C) and g(p) =g'(p')

+Hp)N(g'(p')) for each pED. A(p) is a real function with 0 ^X(p) g 1

and p' is a point in D depending on p. \(p) can be chosen so that given

e> 0, max peD X(p) | N(p') \ <e.

Proof. We define the disc g(D) by the following equations:

g(re«) = g'(t(r)e*») + m(r)N(g'(t(r)ei'))

where t(r) and m(r) are the functions of r defined below.

t(r) = 1 for 1 - 5 g r g 1.

l(r) = ar3 + br2 + cr + d for 1 - 25 g r ^ 1 - 5.

/(r) = [(l - a)/(l _ 25)]r for 0 ^ r g 1 - 25.
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m(r) = 1 - r for 1 - 5 ^ r ^ 1.

m(r) = .4r3 + Br2 + Cr + D for 1 - 25 g r g 1 - 5.

m(r) = 25 for 0 g r g 1 - 25.

The coefficients for the cubic portions of t(r) and m(r) are

a = (35 - 1)/52(1 - 25), A = 1/52,

j = (1452 r 145 + 3)/52(l - 25), F = (45 - 3)/52,

c = (1953 - 3552 + 195 - 3)/52(l - 25), C = (452 - 85 - 3)/52,

d = (-4S3 + 1052 - 65 + l)/52, D = (253 - 452 + 45 - l)/52.

It can be verified directly that g(D) is a disc satisfying the condi-

tions of the lemma. By choosing 8 sufficiently small one can insure

that maxper>X(p)| N(p')\ <e (A(p) = m(r) in our formulas).

Lemma 3. Let h(M) be a topological imbedding of a differentiable

2-manifold M in E3. Suppose f(C)EM and h is such that h(M) is

regular except along f(C). On f(C), h(M) has a family of cusps,

that is if P(p) is the normal plane to h(f(C)) at pEh(f(C)) then in a
neighborhood of p in P(p), P(p)C\h(M) consists of two regular inter-

vals with just p in common. These intervals will have distinct tangents at

p in general. Under these conditions given ox>0 there is an imbedding

h'(M)EE3 such that \h'(p)-h(p)\ <bx, for all pEM. Assuming M
has a metric, given o2>0we may determine h! so that h'(p) —h(p) except

for \p—f(C)\ <d2. Finally, h' can be chosen so that for points p with

h'(p)9£h(p), h'(p) is in the interior of h(M).

Let P(p) (pEh(f(C))) be a continuously differentiable family of
planes which for each pEh(f(C)) is'independent of the tangent line

to h(f(C)) at p. In a neighborhood of p, P(p)C\h(M) consists of two

intervals Z-i(p) and L2(p) and h~1(Lx(p)\JL2(p)) is a regular interval

in M which is transverse to /(C). h is modified in a neighborhood of

/(C) by mapping h~1(L1(p)\JL2(p)) into N(p) and fitting together

the mappings on the various h~l(Lx(p)VJL2(p)) in a continuously

differentiable fashion.

We indicate how the latter can be done. The exact formulas are

complicated and will not be reproduced here. A coordinate system

is chosen for each P(p) by choosing the x-axis along the tangent

vector to Lx(p) and the y-axis normal to this x-axis. Two points

pi(P)ELx(p), p2(P)EL2(p) are chosen such that px(p) and p2(p) are

both distinct from p and their distances from p are differentiable

functions of p. Let Tx(px(p)) and T2(p2(p)) be the tangent rays to

Lx(p) and L2(p) at the points px and p2 respectively which point in the
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direction of p. Let Ts(p) be a line in P(p) which cuts across Pi and P2

(notice that Ti9*Tt), is "near" to p and whose slope (relative to the

coordinate system in P(p)) and distance from p are differentiable

functions of p. The two corners at the points of intersection of Pi

with P3 and Tt with P3 are "rounded off" and the mapping h is modi-

fied in a neighborhood of/(C) to follow the smoothed off curve from

Pi(p) to Pt(p).
By a shrinking along interior normals, h'(M) can be chosen to be

interior to h(M).

Lemma 4. Let fi(I) and f2(I) be two regular intervals with fi(I)

^7/7(7) Ch(M) (a regularly imbedded 2-manifold in E3) and fi(I)C\f2(I)
=/i(0) =/2(0). Then given 5>0 there is an interval ft(I)Ch(M) such

that fz(p) is within a distance 8 of fi(I)\Jf2(I) and except for p in

the b-neighborhood of l/2,fi(p)Efi(I)^>ft(I). Furthermore, we may have

the part of f3(I) not contained in fi(I)^Jft(T) on either "side" of fi(I)

VJft(I) (relative to h(M)). Finally, except for the b-neighborhood of

fi(0)^Jft(0),fi(I)\Jft(I)Ch(I).

The proof of Lemma 4 is the same as that portion of Lemma 3 con-

cerned with the "rounding off" of the intersection of h(M) with

P(p). We will not give details here.

Suppose/(C) CM„ is a circle and g(I) CMn is an interval such that

g(0) =/(pi),_g(l) =f(pt) and f(C)C\g(I) =f(Pi)\Jf(p2). Let Ai and A,
be the two intervals of C determined by pi and pt. Then f(Ai)^Jg(I)

and f(A2)\Jg(I) are two topological circles. Given 5>0 we can alter

f(Ai)V)g(I) (say) in a 5-neighborhood of f(pi)^Jf(pt) in accordance

with Lemma 4, replacing f(Ai)VJg(I) by a circle/'(C) which coincides

with f(Ai)KJg(I) except in a 5-neighborhood of f(pi)^Jf(p2).

Definition 6. By a 5-alteration of/(C) along ^42 by g(I) we mean a

circle/'(C) which is such that

[/'(C) - (f(A2) \J g(I))] U [(f(At) KJ g(I)) -f'(C)]

is contained in the 5-neighborhood of f(pi) KJf(p2) ■

5. Proof of the main result. The proof of our theorem proceeds by

induction on the "complication" of the circles on M„. As a first step

in defining the complication we introduce two circles on T*. Let

£ be the circle x = cos 9, y = sin 0, z = 0 (0^6^2w) and let n he the cir-

cle x=—(2+cos 0), y = 0, z = sin <p (0^(j>^2w). The 3re circles

hi\k, ht\ V and gi\ G will be called the basic circles of Mn.

Given a collection of pairwise disjoint circles {fi(C)} («" = 1, ■ ■ • ,m)

on Mn there is a collection of circles {// (C)} isotopic on Mn to

{fi(C)}  and such that the number of intersections of Ujli//(C)
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with the basic circles is finite (see for example Baer [l, p. 107]).

Definition 7. The complication FJ({/,(C)}) of a finite collection

of pairwise disjoint circles on Mn is the minimum number of inter-

sections of {// (C)} with the basic circles of Mn. {fi (C)} ranges over

the class of circles isotopic (on Mn) to {fi(C)}.

The theorem will be proved by induction on FJ({/,(C)}). Suppose

first that K({fi(C)}) =0. By Lemma 1 we may assume that none of

the {/.(C)} intersects any of the basic circles of Mn. This means in

particular that each/,(C) is contained entirely in e(s) — \J?=X gi(D) or

in some h3-(T*) -(Ay«)UAy(ij)).

The set hj(T*)*Ugj(D) is a topological torus and by Lemma 3 for

any 5>0 there is a regular imbedding hj(T) which coincides with

hj(T*)\Jgj(D) except in a 5-neighborhood of x = 3/2 and in this

neighborhood hj is within 5 of gy(C). Further, we may assume that

hj(T) is contained in the union of Ay(F*)Ugy(F) and its interior.

By choosing 5 sufficiently small any given /.-(C) Ehj(T*) will also

be such that/.(C)GAy(F). Further, if fi(C)Ek(T) and/.-(C)n(/*y(£)
\Jhj(ri)=0 then fi(C)r\(hj(^)\Jhj(ri))=0. But this last condition
implies that fi(C)Ehj(T) — (hj(^)\Jhj(r\)), an open 2-cell. Therefore

fi(C) is homologous to zero in hj(T).

From these remarks it is evident that our theorem for the case

K({fi(C)}) =0 is equivalent to the following two propositions:

(I). If {/.-(C)} is a pairwise disjoint collection of circles on e(S) (a

regularly imbedded sphere in E3) then there is a pairwise disjoint

collection {gi(D)} of discs with g,-|C=/,-: C and gi(D — C)Emterior

oi e(S).

(II). If {/.(C)} is a pairwise disjoint collection of circles on h(T)

(a regularly imbedded torus in E3) and each fi(C) is homologous to

zero on h(T), there is a pairwise disjoint collection gt(D) of discs with

gt\ C=fi: C and gi(D — C) Cinterior of h(T).
To prove Proposition I we note that if there is just one circle in

the collection {/.-(C)} then I follows from Lemma 2. Assume I true

for collections of circles with fewer than m members and suppose

{fi(C)} has m members. Then there is a circle /i(C) (say) one of

whose complementary domains (relative to e(S)) contains none of

the remaining /.-(C). By the induction hypothesis there is a pairwise

disjoint collection of discs g2(D), ■ ■ ■ , gm(D) with g,-| C=/,-: C and

gi(D — C) Ginterior of e(S). By choosing the 6 in Lemma 2 sufficiently

small, it is clear there is a disc gi(F>) with gi(F —C) Ginterior of e(S)

and with gi(D)r\(\}^2 gi(D)) =0. This proves I. II can be proved

in a similar fashion. This establishes our theorem in the case

K({f<(C)})=0.
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Assume next the theorem is true for collections of circles with com-

plication K^k — l and suppose {fi(C)} (t = l, • • • ,m) is a collection

with complication k. By Lemma 1 we may assume that the number

of intersections of U^.1/<(C) with the basic circles is k. Since k>0 we

have (Ur.i/,(C))n(U?_1|,(C))^0. Otherwise, each /,-(C) is con-

tained completely in e(S) or in some ht(T*). Suppose f,(C) is con-

tained in ht(T*). Since/,(C) is homologous to zero in Mn, it separates

Mn into two parts, one of which is contained entirely in ht(T*). Hence

fi(C) is homologous to zero in ht(T*) and the subset of U™ 1/<(C)

contained in ht(T*) can be brought by an isotopy in ht(T*) to a posi-

tion where it does not intersect A,(£)U/*<(,7). Thus/,(C) adds nothing

to   the   complication.   Therefore,   if   K({fi(C)}) >0,    (Ur.i/,(C))

n(Ur.x MC))*0-
Consider a circle ge(C) which intersects certain members of {f,(C)}

say/i(G), • • ■ , fm(C) (0<m'^m). Let the points of intersection of

fi(C) 7 = 1, • • • , m') with ge(C) he pi\ ■ • ■ , p®, numbered in order

traversing ge(C) from a certain fixed point in a certain direction. Be-

tween successive pairs pf, p^+i (or p®, p[^) there must be an even

number of points of each set pi\ ■ ■ ■ , pk- (j^i)- To see this last

statement we use

Lemma 5. Let fi(C) and ft(C) be two disjoint circles on Mn each

homologous to zero (in M„). Let M{, M{' and M{, Mi' be respectively

the manifolds with boundaries into which fi(C) and f2(C) divide Mn.

Then with a suitable rearrangement of primes (if necessary) we have

MlCMi, Mi'DMt".

Since/i(C) and/2(C) are disjoint, /i(C) is contained in the interior

of (say) M{ and f2(C) is contained in the interior of (say) M{'.

Both M( and M[' cannot meet M2 for this would force /i(C) to

intersect f2(C). From this and the fact that/2(C) is contained in M\

it is clear that Ml CMi■ A similar argument shows that M{' CM{'.

Let Mi, M'i be the components into which fi(C) divides Mn and

suppose fj(C) is contained in Mi'. Then by Lemma 5 a component

Mj' of the complement of//(C) is such that M'/CM''. Pair to-

gether two points of the set p¥\ • • • , ptj if they can be joined by

an interval of |C(C) lying entirely in Mj. This procedure pairs each

point of pi\ • ' • , pt! with some other point of this collection and

the two members of a pair cannot be separated by points of pf, • • • ,

pi*]. Hence there must be an even number of points of the set

Pi\ ■ • ■ 7 PtJ between successive pairs of pf, ■ ■ ■ , pt}.

It is clear from this that for some i and some pair pf, pf (say)
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the interval of g,(C) between p?' and pf (in the chosen order along

£e(C)) contains no points of any of the circles {/.(C)}.

Let g(I) he the interval joining pi" to p® along g,(C) and which

is such that I(/)nUjLi/y(C)=pi1,Jp2J). The pair /TW). fT*(tP)
divides C into intervals ^4i and A2. Let//(C) be a 8-alteration of

fi(C) along ^4i by g(I) and/,-'(C) be a 8-alteration of/,(C) along .42

by g(I). The 8-alteration can be chosen so that (//(C) J//' (C))

nU3>,./y(C)=0 and //(C)n//'(C) is a subinterval of g„(C). By
pushing //(C) and //'(C) a short distance away from £,,(C) in the

suitable directions we get two circles // (C) and //' (C) which are

disjoint from each other and do not meet the remaining /y(C).

//(C) and //'(C) each separate Mn so that the set of circles

/i(C), • • • , /._i(C), //(C), J/'(C), /.+i(C), • • • , fm(C) satisfies the
conditions of the theorem. Clearly the complication of this set is at

least two less than K( {/y(C)}). By the induction hypothesis there are

discs {gj(D)} (jr^i), gi(D), gi'(D) which satisfy the conditions of

the theorem with respect to the circles {/y(C)} fj'j^t), Ji (C), //' (C).

By pushing g/ (D) and £/' (D) together along g(I) we get a disc

gi(D) whose boundary gi(C) is a curve isotopic to gi(C). gi(C) is

straightened out into gi(C) and gi(D) is deformed into a disc gi(D)

with boundary gi(C) using Lemma 3. Evidently the deformation can

be limited to an arbitrarily small neighborhood of g(/) and, there-

fore, gi(D) can be chosen so that it does not meet g,-(D) (J5*i). Also,

gi(D) can be made so that except for gi(C) it is interior to Mn by using

techniques similar to those in Lemma 2.

Therefore, the circles /i(C), • • • , fm(C) bound pairwise disjoint

discs gi(D), • • • , gm(D) and the theorem is established by induction.

Without some condition on the imbedding of the surface Mn the

theorem above is not true. For example, one can imbed a surface M2

of genus 2 in 3-space in such a way that there is a circle on M2 which

separates M2 and does not bound a disc in the interior of M2.

The theorem can be stated and proved within the framework of

piece-wise linear imbeddings instead of regular imbeddings as we

have done. This piece-wise linear point of view seems to simplify the

proof at certain points and complicate it at others.
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