BIBLIOGRAPHY

- 1. M. L. Curtis and M. K. Fort, Jr., Homotopy groups of one-dimensional spaces, Proc. Amer. Math. Soc. vol. 8 (1957) pp. 577-579.
- 2. S. Eilenberg and S. MacLane, Relations between homology and homotopy groups of spaces, Ann. of Math. vol. 46 (1945) pp. 480-509.
- 3. M. K. Fort, Jr., Mappings of S¹ into one-dimensional spaces, Illinois J. Math. vol. 1 (1957) pp. 505-508.
- 4. H. B. Griffiths, Infinite products of semigroups and local connectivity, Proc. London Math. Soc. (1956) pp. 455-480.

University of Georgia

ON ESSENTIAL FIXED POINTS

J. M. MARR

The purpose of this note is to furnish an affirmative answer to a question posed at the Summer Institute on Set Theoretic Topology held at the University of Wisconsin in 1955. Let $X^{\mathbf{x}}$ denote the space of continuous functions of X into X topologized by the compact open topology. A fixed point p of a map $f \in X^{\mathbf{x}}$ is called essential if for each neighborhood U of p there is a neighborhood N of f such that if $g \in N$, then g has a fixed point in U.

THEOREM. If X is a compact Hausdorff space which has the fixed point property, then there is an $f \in X^x$ such that each fixed point of f is essential.

PROOF. Let x_0 be any element of X, and consider the map $f \in X^x$ where $f(X) = x_0$. Let U be any neighborhood of x_0 . Then $N = \{g: g(X) \subset U\}$ is a neighborhood of f with the property that each $g \in N$ has a fixed point in U. Therefore x_0 is an essential fixed point of f. Since x_0 is the only fixed point of f, f is the required map.

Kansas State College

Received by the editors June 16, 1958.