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1. Introduction. The concept of a half ring of sets was introduced

by von Neumann [2], who made extensive use of it to define and

investigate measure on product spaces. A half ring (R is a collection

of subsets of a given set satisfying the following conditions:

(i)  If P,P'G(R then PHP'G(R.
(ii) If P, R'E® and if PCP' then there exists a finite chain

Pi, Rt, ■ • • , Rk, RiE® lor i = l, 2, ■ ■ ■ , k such that P=PiCP2
C • • • CP* = P' and Rj-Rj-iE®. for .7 = 2, 3, • • ■ , k.

The family of all bounded intervals on the real line and the family

of all parallelograms in the plane with parallel sides are examples of

half rings.

We shall investigate properties of half rings in re-dimensional Er-

clidean space P" (re^2). In particular, for convex nondegenerate trans-

lation half rings as defined below, we shall give a complete character-

ization of all such families of sets in E". P" is an re-dimensional Hilbert

space and it will be assumed that the reader is familiar with the basic

geometrical properties of such spaces, more specifically with such

notions as hyperplanes, half spaces, spheres, line segments, cones,

convex sets, support planes, translation of sets, etc.

A translation half ring (t.h.r.) in E" is a half ring (R of subsets of

En such that if RE®, and if P* is a translate of P, then R*E®. If

there exists a nondegenerate RE® (i.e. an element RE® whose in-

terior P° is not empty), (R is a nondegenerate t.h.r.

A convex polyhedron P is a subset of P" satisfying:

(a) P is bounded,

(b) P = Of.! SHi where each SHi is an open or closed half space with

the hyperplane Hi for its boundary.

If P is nondegenerate, the intersection Hi(~\ P of H{ with the closure

P of P is defined to be a face of P provided there exists a sphere

St(x) contained in  P and tangent to 7J„ The set of hyperplanes
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which determine faces of a nondegenerate polyhedron P also deter-

mines a minimal collection of half spaces whose intersection is P

and which is contained in any other collection of half spaces which

determine P. It also follows that //.-HP is a face of P if and only if

there exists xEHi(~\P and a sphere Se(x) with center at x such that

the disk i/,n5«(a:) is a subset of HiC\P. If F is degenerate, this can

be used as the definition of a face of F. The faces i/,/^ P oi P then

generate unique hyperplanes.

If a family of hyperplanes consists of parallel hyperplanes, they

are said to have the same direction d. A collection (P of convex poly-

hedra is oriented with respect to a set SD of directions if every PES'

has only faces which generate hyperplanes of directions dE%>- The

faces are said to have the direction of the respective hyperplanes they

generate.

2. The structure of half rings in En.

Theorem 1. The set of all convex polyhedra forms a half ring in En.

Proof. The intersection of two convex polyhedra is again a con-

vex polyhedron.

To prove the second half ring axiom let P, P'E® and PEP'- P

can be written as RJ~i Sh,■ where each HiC\ P = F,- is a face of P. Let

Pi = P, P,-+i=PAJFi for i = l, 2, • • • , £-l._Clearly Pk=P and
[Pi}i-i,t,...,k is a chain extension from P to P which satisfies (ii).

Thus without loss of generality we can assume F = P. Therefore P

can be expressed as Rfr,1 SHi. Let Pi=P, Py = (R,*-/ SH,)r\P' for

j^k — l and Pk=P'. Each Fy is a convex polyhedron and PyDPy_i

for.7 = 2, 3, • • • , k. If 2^j^k-l then

Pf - Pi-X = ( R s„) n p' - ( R   sH) r\ p'

= ( R 5fl< - R    5*^ Hi"= (£» - iSVi) ^ ( n Sh) H F'.

But (E" — Shi-x) is an open half space and so Py—Py_iG(P. If J = &

similar reasoning will show that P* — P*_i G o1. Therefore {P.-} ,=i ,2, • • • ,*

is the desired chain extension from PX=P to Pk = P'.

Corollary. // (P is the set of all convex polyhedra oriented with re-

spect to a given set of directions then 6> is a half ring.

Lemma. If (9 is a half ring of convex polyhedra, P, P'G(P such that

PEP', {Pi}i-i,2,.-.,t is the finite chain of (ii) and if P{_x is nonde-

generate then F,_i = 5i/nF,- where HC\7i-X is some face of P,_i.
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Proof. Since P,-_iCP< we can write P,_i = ((!]_! Sff^r^P,-. Assume

that each (Pi-iC\Hj)f"\Pj contains a point X/ such that x/GUi^y Ht.

If />1 then the line segment [xi, x2] contains an interior point z of

Pi_i. For if [xi, x2] Cb(Pi-i), since [xu x2] CP° then for each zE [xyXt]

there must be an 77/ for j = l, 2, ■ ■ • , I such that zEHj. But there

are infinitely many points on [xi, X2] and hence some Hj must con-

tain at least two distinct points. But if a hyperplane contains two

points of a line it contains the entire line. Thus we reach the contra-

diction that Xi, xtEHj for some/.

Having shown the existence of zG[xi, x2] such that zGP?_i we

note that since Xi, XtEb(Pi-i)r\P° then xi, x2Eb(Pi—P,-_i). But then

by convexity we reach the contradiction that zE [xi, x2] Eb(Pt—P,_i)

or zG(Pi-P,-i)^P?-i. Thus 1 = 1.

Theorem 2. If (P is a nondegenerate t.h.r. of convex polyhedra, then

for every finite set {di} ,«i ,2,... ,m of distinct directions of (P, (P contains

a nondegenerate polyhedron R with exactly two faces of each such direc-

tion.

Proof, (a). It will be shown that for each direction d of (P, there

exists a nondegenerate member of (P with direction d.

If P is degenerate and has direction d, since (P is nondegenerate

there exists P'G<P, zGP" such that zE(P')0. Translate P into P*

such that zEP*. P*HP'=Pi can be extended into P' by a finite

chain {P,-} ,=1,2,. ■ ■,* of (ii). If P2 is nondegenerate and does not have

direction d then PinP2^0 (0 is used to denote the null set). But

since Pi is degenerate, we reach the contradiction that P2—Pi is not

convex. If P2 is degenerate then by repeatedly applying the above

argument we can produce a nondegenerate P. with direction d.

(b) Let P be a nondegenerate member of (P with a face H(~\ P of

direction d. Since (P is a t.h.r. we can assume the existence of a non-

degenerate P' such that (P') °DHr\ P. Let {P,} ,-=i ,2,....» be the chain

extension from P to P'. By the lemma there exists i<k such that

P,-_i = SHf\Pi where 77nP,_i is a face of P,-_i. If we take the largest

such i it is apparent that Pj—P,_i is nondegenerate. Thus P,_i and

Pi—P,-i are nondegenerate members of (P such that each of them

have direction d and the intersection of their determining half spaces

of these directions is not a half space no matter how these polyhedra

are translated.

(c) Let {P,-, j^u---,T7> be a collection of polyhedra such that each

Pij has direction d, with corresponding half spaces SHij where

SHaC\Snit is not a half space. There exists e>0 and x,;GP«j such

that St(xfj) CPa and Se(xi,) is tangent to P,7 at P77. Since (P is a
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t.h.r. we can assume that the x.-y's coincide. From the definitions of

a face of a polyhedron and direction stated in the introduction, it is

clear that R?_i;y-i,«P«j is the desired polyhedron.

If (P is a half ring of convex polyhedra oriented with respect to m

distinct directions then since no convex polyhedra can have more

than two faces of any given direction, it follows that no PES' can

have more than 2m faces. Examples can be constructed to show that

not every half ring (P of convex polyhedra with an upper bound on

the number of faces is oriented with respect to a finite number of

directions. However, as the following corollary shows, this cannot

occur in a nondegenerate t.h.r.

Corollary 1. A nondegenerate t.h.r. (P of convex polyedra is oriented

with respect to a finite number of directions if and only if there exists a

number m such that each PES' has fewer than m faces.

Proof. The proof follows immediately from the foregoing state-

ment and Theorem 2.

A nondegenerate polyhedron REE" is a parallelepiped if F has

exactly n distinct directions. It is known that a nondegenerate paral-

lelepiped has exactly 2ra faces. It is further known that every non-

degenerate polyhedron has at least n distinct directions and hence a

nondegenerate parallelepiped R, oriented with respect to these n

directions exists. Moreover, R can be determined so that it will be

contained within any arbitrarily small sphere. If a parallelepiped can

be oriented with respect to n directions, these directions are said to

be independent.

Corollary 2. // (P is a nondegenerate t. h. r. in En and if {dt} <_i,j,...,„.

is any set of n independent directions of (P, then there exists in 0"> a non-

degenerate parallelepiped R with these n directions.

Proof. Let {P«} ji};!.» be a collection of elements of G> con-

structed as in part (b) of the proof of Theorem 2 and described in

part (c) of the same proof (P,y has direction di/). Let R be a parallele-

piped oriented with respect to {di} ,_i,2,...,n such that for each P,y,F

can be translated into Ra where F,y will be contained in P.-y with its

face of direction di in a corresponding face of P,y. Translate each Py

into Py so that the corresponding translates R% of F,y will coincide.

It is then clear that R"_iJ=i,2 P.y will be the desired parallelepiped.

Corollary 3. The set (R of all parallelepipeds and degenerate poly-

hedra with respect to n directions is a half ring.

Proof. From Theorem 1 the set f? of all polyhedra oriented with
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respect to these n directions is a half ring. But each nondegenerate

PES' must have at least n directions to be bounded. Therefore

(P=(R.

Corollary 4. (P is a nondegenerate t.h.r. of parallelepipeds and de-

generate polyhedra oriented with respect to n distinct directions if and

only if each nondegenerate PES' has the same number of faces.

Proof. By Corollary 1, (P is oriented with respect to a finite num-

ber k of directions. By Theorem 2, there exists PES' with at least

2k and hence exactly 2k faces. But by Corollary 2 there is RES'

with n directions and 2« faces. Therefore 2k = 2n or n = k and hence

(P is a set of parallelepipeds and degenerate polyhedra oriented with

respect to n distinct directions.

3. The characterization of nondegenerate convex translation half
rings.

Theorem 3. // 8 is a t.h.r. of bounded convex subsets of En then the

closure G of each GEQ is a convex polyhedron.

The proof of Theorem 3 will depend on the five lemmas included

below. A boundary point acof a convex subset G is a support point if

there is at most one support tangential hyperplane H containing x.

It is known [l] that for each boundary point y(yEb(G)) there is at

least one support hyperplane Hy containing y.

Lemma 1. // the boundary point x of a convex set G is a boundary

point for a sphere St(y) EG then x is a support point for G.

Proof. It can be shown from Hilbert space considerations that

every point of a sphere is a support point for the sphere. Therefore

there is at most one hyperplane Hx supporting S,(y) at x. However

there exists a hyperplane i/x' which is supporting for G at x and hence

for S.(y) at x. Thus i/x' =Z/X.

Lemma 2. If G is nondegenerate and convex and if xEb(G) then

S,(x) contains a support point of G for every e>0.

Proof. The boundary b(G) is closed and every closed sphere in

E" is compact. Since xEb(G) there exists yES(/2(x)r\G<>. Since b(G)

is closed, b(G)C\St(x) is compact. Therefore the distance 5 from y to

St(x)C\b(G) is assumed, say at zESt(x)f~\b(G). Since the distance

from x to y is less than e/2, 5<e/2. But if uEb(G) and uESt(x) the

distance from u to y is larger than e/2. Thus Ss(y) is tangent to b(G)

at and only at points of St(y)C\b(G) and hence Ss(y)EG. Therefore

by Lemma 1, Se(x) must contain a support point of G.
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Lemma 3. If G is closed, nondegenerate, convex and if { Shx } is the

collection of all support half spaces containing support points x then

fiSst = G.

Proof. Clearly r\SHxDG. If zGH5^ and zEG then every line seg-

ment from z to an interior point of G contains a boundary point of G.

Therefore the cone C determined by z and an interior sphere S&(v) of

G contains a point yEb(G) on its axis. Hence there exists St(y)CC.

Sc(y)C\b(G) contains no support point of G. For if w were such a

point then since the support half space Sh„Z)G^Ss(v) and since there

is a uESi(v) such that wE[z, u](~\b(G) we have the contradiction

that zESh„- Hence St(y)f\b(G) does not contain a support point

which contradicts Lemma 2. So zEG and thus C\SHx = G.

Lemma 4. If x and y are support points of a convex bounded set G

such that x and y determine distinct support hyperplanes, then the line

segment (x, y) (not including its endpoints) is contained in G°.

Proof. If (x, y)<ZG° then z = x/2+y/2Eb(G). Thus z can be cov-

ered by a support hyperplane 77. If Hz contains either x or y then

it contains x and y. Therefore from hypothesis Hz contains neither

x nor y. But xEb(G) and so xESh,- But then yESii, and this con-

tradicts the fact that yEb(G).

Lemma 5. If G is a nondegenerate convex set but not a polyhedron then

b(G) contains an infinite sequence {xn} of distinct points such that the

open segment (x,-, x,) EG" for i9*j.

Proof. If G is not a polyhedron then there exists an infinite number

of support points (Lemma 3) each determining unique support

hyperplanes. By Lemma 4 (x,-, Xj)CG" for i9*j.

Proof of theorem 3. (a) If GG9 >s nondegenerate but not a con-

vex polyhedron there exists an infinite sequence of points of b(G)

satisfying the conclusion of Lemma 5. Since G is bounded, this se-

quence is bounded and therefore has a subsequence {x,} which con-

verges to some point x0Eb(G). Thus every sphere St(x0) with center

at xo contains a convergent subsequence {x,-y} of {x,-}.

Translate G into G* such that x* G G°. The collection

{Gt — Gt-i, Gi} l=t,s,...,k, where each Gt is a member of the finite

chain from Gi = G*P\G to G, is a partition of G. Each translate x*.

of Xij is such that xfjEb(Gt — G<-i) for some t. Since the sequence

{x*} is infinite and {Gt — G(_i| is finite, there exists m — 2 and

Zi, z2G{x4*} such that zi, z2Eb(Gm — Gm_i). But since (zi7 z2)CG?,

(zi, z2)<X.(Gm — Gm_i). But then (zi, z2) must be contained in the closure
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of Gm — Gm-X and hence we reach the contradiction that this closure

contains an interior point of Gx.

(b) If G is degenerate then unless G is either a line segment or a

point, in which case G is a convex polyhedron, there exists k <n such

that G is a nondegenerate subset of Eh. Part (a) is then a valid argu-

ment showing that G is a polyhedron in Ek and hence G is a degener-

ate polyhedron in En.
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