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fibre is the re-dimensional complex projective space (complex projec-

tive co-tangent bundle). This bundle of complex dimension 2re + l is

our M. Considering the fibre of T(V) as the (2w+2)-dimensional

real vector space, we take as P the co-tangent sphere bundle over V

(i.e., the fibre of P is a sphere in the fibre of T(V)).

T(V) — V is the principal fibre bundle associated with a line bundle

L over M. The definition of the complex contact structure on M is

similar to the one in the first example. The classical real contact

structure on the co-tangent sphere bundle P is the one derived from

the complex contact structure on the complex projective co-tangent

bundle Mas described in the proof of (3).
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FIXED POINTS FOR MULTI-VALUED FUNCTIONS ON

SNAKE-LIKE CONTINUA

RONALD H. ROSEN1

1. Introduction. A multi-valued function from a space X into a

space Y is a point to set correspondence. Hamilton has shown that

snake-like continua have the fixed point property with respect to

maps [2]. Ward has extended this to show that snake-like continua

have the fixed point property with respect to continuous multi-

valued functions [6]. The results of this paper establish that a more

general class of spaces, those which are inverse limits of arcs, have

even stronger properties with respect to multi-valued functions.2

2. Multi-valued functions. All functions are multi-valued unless

otherwise indicated. A map will always be a continuous single-valued

function.
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Definitions. For a space Y, let K(Y) denote the class of non-

empty subsets of Y. A function /: X—>FJ( Y) will be called a multi-

valued function of X into Y. For each x in X, f(x) is a subset of Y.

For AQX, let f(A) =Uie^/(x). / will be called onto if f(X) = F. If
/: X—fY and g: F—»Z, then the composition of / and g is gf: AT—>Z,

where for each x in X, gf(x) =g(f(x)). Associated with each function/

is another function/-1 defined onf(X). Ifyisin Y,f"1(y) = {x\f(x)3y}

(if yEf(X),f->(y)=0); ii

B C YJ-^B) =  U f-\y) = {x\f(x) C\ B ^ 0}.

Note that (/_1)_1 =/ for any function /. A function / will be called

point closed, if f(x) is closed for each point x in X; point connected,

if f(x) is connected for each x in X; and closed (open) if the image

under/of every closed (open) set in X, is closed (open) in F.

/: X—> Y is upper-semi-continuous (u.s.c.) if it is point closed and

/_1 is closed;/is lower-semi-continuous (l.s.c.) if/-"1 is open; finally,

/is continuous if it is both u.s.c. and l.s.c. It is immediate for compact

(the finite covering property) Hausdorff spaces, that the composition

of two u.s.c (l.s.c.) functions is u.s.c. (l.s.c).

Let A and A' denote our definitions of u.s.c. and l.s.c. We also

note the following conditions:

B. For each point x in X and open set U in Y such that/(x) CI TJ,

there is a neighborhood N of x so that x'EN implies f(x') CI U.

C. For any converging sequence of points in X,

(x„) —> xo, lim sup/(xn) C/(x0).
n

B'. For each point x in X and open set U in F such that f(x)C\U

7*0, there is a neighborhood Nof x so that if x'EN,f(x')r\U^0.

C. For any converging sequence of points in X,

(x„) -» x0,/(xo) Q lim inf/(x„).
n

In general, for point closed functions/, A implies B and B implies

C; if X is metric and F compact Hausdorff, A, B, and C are equiva-

lent. For all functions/, A' and B' are equivalent and both imply C;

if X is metric, all three are equivalent. C and C are the definitions

used by Strother [5].

If/: X-+Y, G(f), the graph oi f, is the set {(x, y)|yG/0*0} con-
tained in XX Y, the cartesian product of X and Y. When/ and g are

both functions of X into F, g>/ (g refines f) if for each xG-X", g(x)

C/(x).
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Henceforth all spaces are assumed to be compact Hausdorff.

Lemma 1. Let f: X—>Y be continuous and X be connected. There is

an u.s.c. function g: X-+Y such that g>f and the graph of g is con-

nected.

Proof. Let /: X—*G(f) he defined as follows, f(x) = (x, f(x)). f is
continuous and onto. By Lemma 3 of [4], if B is a component of

G(f), /-'(P) =X. Next we define f: X-*B, g(x) = /(x)f\B. Denote by
7r the natural projection ol XXY onto Y. g is clearly point closed. If

A is a closed subset of B, g~1(A) = {x||(x)n^4^0} =f~l(A). It fol-

lows that | is u.s.c. and so g=irg: X—*Y is also u.s.c. For each xEX,

g(x)=Tr%(x)=w(f(x)r\B)=T((x, f(x))f~\B)Qf(x). It is easily seen

that B = G(g).

Lemma 2. Let X, Y, Z, and W be spaces, f: Y—>X a map onto,

g: Y—*Z u.s.c, h: Z—>W a map, and G(g) connected. Then G(hgf_1) is

connected.

Proof. Let t\, 7r2, and t3 be the natural projections of ZX YXZ

onto XX Y,   YXZ, and XXZ respectively. Define

9 = {(*, y, z) | y Ef~l(x)lkzE g(y)} C X X Y X Z.

We note that 7n(g) = G(f~l), *■,(§) =G(g), and tt3(9) =G(gf~l).

9 is closed as may be seen by a straight-forward application of the

u.s. continuity of/-1 and g. 9 is also connected. If we deny this, there

is a partition 9 = ^4/5. As G(g) is connected, there is a point (y, z)

Etrt(A)r\irt(B)C:G(g). Then there must exist points xi, x2 in X so

that (xi, y, z)EA and (x2, y, z)EB. Therefore since / is a map,

f(y) —Xi — Xt, a contradiction. Define n: G(gf~1)—^G(hgf~1) by fi(x, z)

= (x, h(z)). As h is a map, ft is a map onto and G(hgf~x) is connected.

If / and g are both functions from X into Y and there is a point

x in X so that f(x)C\g(x) 9*0, x will be called an incidence point ol

f and g; il X = Y and g is the identity map, x will be called a fixed

point of /.

Lemma 3. Suppose f and g are two functions from an arc I into an

arc I',f is u.s.c. and onto, and G(f) and G(g) are both connected. Then

f and g have an incidence point.

Proof. We shall show that G(f)C\G(g)9*0. IXI' is homeomorphic

to the unit square I2 = {(x, y)\ O^x^l, O^y^l} CP2. We assume I

= {(*> 30/:V = 0}c:/2 and 7'={(x, y)/x=0}c/2. As / is onto, G(f)

intersects the horizontal sides of 72, {(x, y) | y — 0} and j (x, y) | y = 1}.

If we assume G(f) C\ G(g) = 0, then (G(g) C\ {(x,y)|x = o}) and
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(C(g)fM(x, y)|* = l}) are nonempty subsets of G(g) which are

separated by the continuum G(f), contradicting the connectedness of

G(g).

3. Inverse limits and snake-like continua. We shall use inverse

systems as defined in [l ].

X = lim \Xa, ira\a,iieA

will mean that X is the inverse limit of the inverse system {Xa, TTa}a,fi€A

where {iri}a.peA is the class of projection maps and A is the directed

set. We recall that the inverse limit of compact nonempty Hausdorff

spaces is again a compact nonempty Hausdorff space. If A and A'

are two directed sets, a function <p: A-+A' will be called a homomor-

phism if a^P in A implies that <j>(a) ̂cp(fl) in A' and <b(A) is cofinal

in A'; a one-to-one homomorphism will be called an isomorphism.

A chain is a finite collection of open sets (ux, • ■ ■ , uk) so that

UiCsuj^O if and only if \i—j\ ^1, i, j = l, ■ • • , k. A compact con-

tinuum will be called chainable ii each of its open coverings has a

refinement which is a chain. A compact metric chainable continuum

is called a snake-like continuum. It is known that each snake-like

continuum S is the inverse limit of a sequence of arcs (see [3] for an

even more general result); if 5 is nondegenerate we may assume that

all the projection maps are onto.

It is not hard to prove that if X is the inverse limit of arcs, it is a

chainable continuum. It would be interesting to know if each compact

chainable Hausdorff continuum is the inverse limit of arcs. Here are

two examples of nonmetric compact continua which are the inverse

limit of arcs.

(1) Let [l, 0] be all the ordinals from 1 to fl, the first ordinal

preceded by an uncountable number of ordinals. Let X be the space

constructed from [l, Q,] by connecting each ordinal and its successor

(save, of course, fl) by an open arc so that each such pair of distinct

arcs are disjoint. X has a natural order topology preserving limit

points in the ordinal sense.

(2) Construct Y from [l, U] using pseudo-arcs instead of arcs. Y

is not ordered, but limit points in the ordinal sense are to be preserved

in its topology.

The directed set for both X and Y may be chosen to be the set of

all ordinals less than 12.

Theorem 1. Let X and Y be the inverse limits of inverse systems of

arcs over directed sets A and A', respectively, and <j> an isomorphism of

A into A'. Suppose f and g are functions of X into Y,f and g are u.s.c,



iojo] MULTI-VALUED FUNCTIONS ON SNAKE-LIKE CONTINUA 171

/ is onto, and G(f) and G(g) are both connected. Then f and g have an

incidence point.

Proof. Let

X = lim {/„, Ta}a,peA,        Y = lim {/«-, pa'}a',peA'.

We assume 7rf, p£- are onto for each a, p\ a', /?', since the cases when

eitherX or Fis degenerate are trivial. Define/a =p*(«)/«■" 1:/a—*/^(a)and

ga =P*(a)gT«1: /«—*/*(«) for each a in A. Each/«, ga is u.s.c. By Lemma

2, G(fa) and G(ga) are connected. Since x"1,/, and p^(«) are onto, fa is

onto. By Lemma 3, as Ia and /^<a) are arcs, /„ and ga have an inci-

dence point.

For each x in X, define

F(x) = lim {faTa(x), p^(a)}

and G(x) similarly with respect to the functions g«7ra(x). We shall

show that/(x) =F(x) and g(x) =G(x).

For each a^(3, Pf$h>/„*£ Let kEh- Then Trf-Vf©^, so
^Vf©^1®. Hence/„ir5«)3p«.)/^1«)=pJS//,«). In particu-
lar, then, p^)f0ir^(x)cZfaTra(x). This means that F(x) is well-defined.

For each a, p*(a)/(x)Cp^(a)/7r~1(7ra(x)) =/«Ta(x), so/(x)CF(x).

Suppose yEY-f(x). Using the fact that IF= {^(tV)}, W

= {p«(«)(F)} are bases respectively for X and F, where a takes on

all values in A, U runs over all open sets in /„, and V, over all open

sets in /*(«); there is an aEA and open sets V and V in I^a) such

that p*(„)/(x) CI F, p*(a)(y) G F', and FP\ F' =0. Since /is u.s.c, there

is a neighborhood AT of x so that f(N)CZp^a)(V), N = wp1(U), f3>a,

and U is open in /„. If £GU, /^(ftQ^F). Therefore /,(£)

^P*wP^)(F)=p*^-1(F), p*«,)(y)Gp^|-1(F'), and

p:ra),-,(F)nPr)-i(F') = o.

Thus P^sjWC/mWCp^j-HF), implying that y$F(x). The proof
for g(x) is exactly the same.

For each a, let Fa be the set of incidence points for fa and ga. We

have already seen that each Pa is nonempty. The sets Pa are closed.

Suppose AGF*—Fa so that/a(X)f>\ga(X) =0. There are open sets U

and V in J#(a) so that /a(X) C J/, g„(X) C F, and Z/n F=0. There is a

neighborhood IF of X so that/a(lF) C U and ga(TF) C F, hence IFf^F*
= 0.

For a<fj, irf (Pf)QPa. Let £GF„. As was shown above, p$S/,j(£)
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C/a?r£(£) and similarly for ga and gp. This implies, faTri(^)r\gairi(i)

^pi^,MO^pi{%(0 ^pil^(MO^g0(O) *0. Accordingly

P = lim {Pa, wi}

is closed and nonempty.

P is the set of incidence points for / and g.

If xEP, then for each a, faira(x)r\gaira(x)9*0 and if «</?,

Pi[a)(f^0(x)r\gpTr^(x))QfaTa(x)nigaTra(x). This means that

L = lim {/a7ra(x) n gair„(x), p^{a)} ^ 0
4—

and

L   C  lim  {/alTa(x), p*(a)}  H  lim {ga7Ta(x), p^(a) }   = f(x) f\ g(x).

If xEX and /(x)ng(x)^0, then for each a, faira(x)r\gaira(x)

^P*(a)/(x)np0(„)g(x)3p^(„)(/(x)ng(x))^O. Since ira(x)EPa, x is in

P.

Corollary 1. Suppose g: S—*S, S is a snake-like continuum, g is

u.s.c, and the graph of g is connected. Then g has a fixed point.

Corollary 2. Suppose f and g are maps from S into T, two snake-

like continua, and f is onto. Then f and g have an incidence point.

Proof. The directed set for 5 and T may be taken to be the integers

and 0 the identity homomorphism. As is well known, the graph of a

map defined on a continuum is connected.

Theorem 2. Suppose X and Y are as in Theorem 1. Let f and g be

u.s.c. functions of X into Y, f onto, and f and g point connected. Then

f and g have an incidence point.

Proof. This is an immediate consequence of Theorem 1 and the

fact that a point connected u.s.c. function defined on a continuum

has a connected graph.

Corollary. Let g: S-^S, S be a snake-like continuum and g u.s.c.

and point connected. Then g has a fixed point.

Theorem 3. Suppose X and Y are as in Theorem 1. Let f and g be

functions of X into Y, f u.s.c. and onto, G(f) connected, and g continu-

ous. Then f and g have an incidence point.

Proof. By Lemma 1, there is an u.s.c. function g': X—*Y so that

g'>g and G(g') is connected. From Theorem 1, there is a point

xEX for which /(x)fY(x)y*0. Since g'(x)Qg(x),f(x)ng(x)9*0.
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Corollary. Let g: S—>S, S be a snake-like continuum and g con-

tinuous. Then g has a fixed point.

4. Remarks. Theorem 3 is false if we replace the conditions that/

is u.s.c. and G(f) is connected by making / continuous. In the unit

square define A, B, and C to be the respective line segments joining

the pairs of points (0, 0) and (1, 1/2), (0, 1/4) and (1, 3/4), and

(0, 1/2) and (1, 1). Let^lUCbe the graph of/andP the graph of g;
f and g are functions from the bottom side of the square into the left

side, both are continuous, and / is onto.

The proof of the corollary to Theorem 3 as first given by Ward in

[6] can be strengthened to show that a compact chainable Hausdorff

continuum X has a fixed point under any continuous multi-valued

function of X into itself, using the definitions A and A' for continu-

ity.

Corollary 2 to Theorem 1 may also be proved directly for compact

chainable Hausdorff continua in a manner analogous to Hamilton's

proof [2], using the following two lemmas.

Lemma A. Let U and T be finite linearly ordered sets. For an element

x in U(T) let Star x be the set consisting of x, its predecessor, and its

successor in the ordering of U(T) (provided, of course, it has any).

Suppose f and g are two maps of U into T so that f is onto and for each

uEU,/(Star u)CStar f(u) and g(Star u)CStar g(u). Then there is an

element uEU for which f(u) \Jg(u) CStar f(u).

Lemma B. Let f and g be maps of X into Y, where X and Y are com-

pact Hausdorff, f is onto, and f and g have no incidence points. Then

there exist finite coverings U of X and V of Y such that for each u in U,

there is a v in V for which f(u)Qv, but g(u)C\Starr v=0.
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