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1. Introduction. In this paper we shall classify the irreducible m-ic

congruences

Cl. 1) Cm(z) = zm+ a12m-1 + • ■ • + am-iz + am = 0       (mod p)

belonging to the modular field defined by the prime p under the

group G of linear fractional transformations

(1.2) T:z=(az' + b)/(cz' + d)

with coefficients belonging to the same field. Two irreducible m-ic

congruences are said to belong to the same conjugate set if one of

them can be transformed into the other by a transformation of G.

The number of distinct irreducible congruences in a conjugate set

will be referred to as the order of the conjugate set. Since the order of

the group G is p(pi — l), it follows that the order of any conjugate

set will be at most p(p2 — l).

A classification of the irreducible binary modular forms under the

group of all binary linear homogeneous transformations of deter-

minant unity in the field GF(pn) has been done by Dickson[4]. Since

an irreducible binary modular form over GF(p) of degree m in x

and y defines an irreducible m-ic congruence C(z) over GF(p) with

roots \^ = (x/yy\ 7=0, 1, 2, • ■ • , m — 1), in the Galois field

GF(pm), it follows that Dickson's results provide a classification of

the irreducible m-ic congruences over GF(p) under the subgroup G'

of transformations of G with determinant a square in GF(p). Clearly,

G' is a proper subgroup of G if p>2, and a conjugate set C under the

group G will consist of, at most, two conjugate sets Ci, C{ under

the smaller group G', i.e., C = C{\JC2. It is shown in §2 that if

aiEGF(pm) characterizes the set C{ under G', then — <ri will character-

ize the set C2 under G' and a\ will characterize the conjugate set C

under the group G.
In studying the irreducible binary modular forms over GF(pn),

Dickson lists two relative invariants, namely,

Q  =   (XP2n~l  - yP2""!)/^"-!  _  yP"-!),

and

L = xpny — xypn.
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It is also shown in this paper that the invariant irm (m>2) is an

absolute invariant under the group G of all binary transformations

in GF(pn), and that 7rffl is expressible homogeneously in terms of J

and K, where

(1.3) J = Q""+l = qr,    and   K = £*"<""-» = l",

and where r = l if p = 2, r = 2 if p>2. The above invariants are in-

variants under the group G provided n = 1 and, hence, may be applied

directly in our problem.

The recursion formula

(1.4) Ft = QFti - KfC2 (Fx = 1, F2 = Q)

given by Dickson and the fact that

rmirrm/qiqjirrm/qiqjti,qI...
(1-5) *m = ————-

where m = q^q^qt' • • • <?«" and where gi, • • • , qu are distinct prime

factors > 1 of m make it possible to express irm explicitly as a function

of J and K for any degree m.

The need for such a classification as that given in this paper arises

in the study of the metabelian subgroups in the holomorph of an

Abelian group of order p' and type 1,1, ■ • • each having commuta-

tor subgroup of order pmJ A classification of the irreducible m-ic

congruences over GF(pn) under the group G of linear fractional trans-

formations with coefficients in GF(pn) may be obtained by generaliz-

ing the results of this paper. Since the group problem does not re-

quire such a generalization, and since such a generalization would

be quite simple to make, we do not offer it in this paper. Conse-

quently, we make use of a special case of Dickson's results; namely,

that where»=l. Furthermore, if « = 1, p = 2, then G = G' and Dick-

son's classification applies directly, hence, in the sequel we restrict p

to be greater than 2.

In §4 we make use of the previous results for the cases m

— 2, 3, ■ ■ ■ , 7. Although classifications relative to G of the irreduci-

ble m-ic congruences for m=3, 4, 5, 6 have been done, it seems in

order here to show how easily this may be done with the techniques

of this paper. In §5 we devote a detailed discussion to the special

case for w = 8.

1 For a connection between the two problems see Brahana, Metabelian groups of

order pn+m with commutator subgroup p™, Trans. Amer. Math. Soc. vol. 34 (1934)

pp. 776-792.
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2. A characterization of conjugate sets under G. Since in (1.3)

r = 2 if p>2, it follows that one may express irm(J, K) given by (1.5)

and (1.4) in terms of q and /. Corresponding to each irreducible factor

rr of degree r over GF(p) of irm(J, K) is a factor 72,- of degree 2r of

irm(q, l). This factor is factorable over GF(p) into two irreducible

factors 7^" and yf each of degree r or is irreducible of degree 2r

over GF(p) according as the root ir = J/K of Tr is a square or a non-

square in GF(pr). If y2r is factorable and 9 is a root of 7,1', then — 9

is a root of yf. If y2r is irreducible and 9 is a root, then —9 is also

a root. Conversely, corresponding to any two roots £ and — £ of

wm(q, I) is an irreducible factor of rm(J, K).

In deciding whether or not two binary forms <pi and <p2 are conjugate

relative to G', Dickson shows that one may employ a root p.\=x/y

of d>i = 0 and a root p2 — x/y of 02 = 0 and determine corresponding

values of ai — qi/h and <rt = qt/lt lor pi and pt, respectively. According

as these values <n and <T2 are roots of the same irreducible factor or

different irreducible factors of irm(q, I) the given forms <j>i and 02 belong

to the same or different conjugate sets.

Let C^z) and C„t(z) be the two irreducible m-ic congruences de-

fined by <f>i(x, y) and <j>t(x, y), respectively. Since pi and pt are roots of

C^(z) and C^(z), respectively, we have, by making use of (1.3) and

the fact that z = x/y, the following important result:

2            2                               (fli    ~ Hi)(nPi  ~ /Xi )
(J/K)i = (qi/li)   = ffi = ir/z,- =     —--j——--

(1 6) 0^-^)(^-w)

= (Pi Mi, M.M» ), (i =  1. 2).

If C7,(2) and CM2(2) are conjugate under G and if piT=pt lor TEG,

then, since the cross ratio ir is an invariant under G, we have a\ = a\.

If, further, CM1(z) and C„t(z) are not conjugate under G', then <ri and

o-2 are not roots of the same irreducible factor of irm(q, I) and ffi^o^.

It follows since ai = ffl that <ri= —0-2, and that cri and a2 are roots of

y^ and yf\ respectively.

Since any conjugate set under G consists of, at most, two distinct

conjugate sets under G', and since there are as many conjugate sets

of irreducible m-ic congruences under G' as there are distinct ir-

reducible factors of irm(q, I), we have along with the above results the

following:

Theorem 2.1. There are as many distinct conjugate sets of irreducible

m-ic congruences over GF(p) under the group G of linear fractional trans-
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formations with coefficients in GF(p) as there are distinct irreducible

factors over GF(p) of the invariant irm(K, L).

Since the corresponding value a„ = q/l of a root p. of an irreducible

m-ic CM(z) is a root of irm(q, I) and is in GF(pm) and, conversely, since

any root alk = q/l of irm(q, I) defines an irreducible m-ic congruence

having a root n whose corresponding value of q/l is equal to (7„,

it follows that any root ir = J/K of irm(J, K) will define an irreducible

m-ic congruence C„(z) having a root n such that

(1.7) x, = Gup>, nn»').

Conversely, the cross ratio 7r„ = (fj.plfip, nfi"') of the roots ju, fi", • • • ,

Mp"'~1 of an irreducible m-ic C„(z) will be a root of an irreducible factor

of icm(K, L). This gives the following:

Theorem 2.2. Two irreducible m-ic congruences CMl(z) and C^z)

having roots fii and m, respectively, are conjugate under G if, and only

if, the corresponding cross ratios x,,, and 7r„2 as defined by (1.6) are

roots of the same irreducible polynomial over GF(p).

Since the value a = q/l for a root fi=x/y of an irreducible binary

form <p(x, y) belongs to GF(pm) and since irll=o2, it follows that any

irreducible factor Tr of irm(J, K) is of degree m or a divisor of m, i.e.,

r\ m. If the root ■wv. = J/K of YT is a square in GF(pr), then Tr defines

two distinct irreducible factors yr^ and yf of 7rm(g, /). These factors

each define distinct conjugate sets relative to G'. Hence, in this case

the conjugate set defined by Tr under G splits into two distinct ones

relative to G'. If, however, xM is a nonsquare in GF(pT), then the cor-

responding factor y2r of wm(q, I) is irreducible over GF(p) and the cor-

responding conjugate set defined by TT does not split into two dis-

tinct sets relative to G'. This gives the following:

Theorem 2.3. Let S be a conjugate set of irreducible m-ic congruences

over FG(p) under the group G of all linear fractional transformations

with coefficients belonging to GF(p) and let C^(z) having a root ju, be any

congruence belonging to S. Let the cross ratio 7rM = (ptp'np, wj.p') be a root

of the irreducible polynomial Tr of degree r over GF(p). Then S will

split into two distinct conjugate sets under the subgroup G' of all trans-

formations of G whose determinant is a square if, and only if, the mark

it,, of GF(pr) is a square in GF(pr).

As a direct result of this theorem we see that if 7rM is a nonsquare of

GF(pr) then 2r\m since the degrees of the irreducible factors of

irm(q, I) must divide m. Hence, m must be even. Conversely, if m is
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odd, then every root of wm(K, L) must be a square. This along with

Theorem 2.3 gives

Theorem 2.4. If m is an odd degree, then every conjugate set S rela-

tive to G splits into two distinct conjugate sets relative to G' and the

number of distinct conjugate sets relative to G is one-half the number

relative to G'.

3. Number of conjugate sets of a given order relative to G. Since

the group G is of order p(p2 — l) it follows that any conjugate set S

will have order at most p(p2 — 1). If 5 contains less than p(p2 — l)

distinct m-ics, then there exist transformations of G that carry each

m-ic into itself. Such transformations must be of order d where d\ m.

If d is the largest order of a transformation that carries an m-ic into

itself, then S must be of order p(p2 — l)/d. Let m=r-d and 5 be a

conjugate set of order p(p2 — l)/d containing S„(z). Then there exists

a transformation TEG of order d that transforms S?(z) into itself

and, hence, p-T=pp, ppT=pp , ■ • ■ . By making use of (1.6) we

see that

(3.1)       x„ = rS = (np' +V +1, M*Vr+') = (Mp! • ZV ■ T, M • TV' • T).

Hence, ir„EGF(pr)CGF(pm) and is a root of an irreducible poly-

nomial of degree r over GF(p). This gives

Theorem 3.1. If m = rd, then the irreducible factors of irm(K, L) of

degree r define distinct conjugate sets of order p(p2 — l)/d. Conversely,

the conjugate sets of order p(p2 — l)/d are defined by the irreducible fac-

tors of irm(K, L) of degree r.

4. Number of conjugate sets of irreducible ra-ics for m = 3,4, • • •, 7.

Clearly, if m — 1, 2 the m-ic congruences are all conj ugate relative to

G. For »i=3we see by Theorem 2.3 that there exists only one conju-

gate set relative to G since there are in all exactly two conjugate sets

relative to G'. This is in accordance with Brahana's On cubic congru-

ences [l].

For w=4 we have irt = Jp — Jp~lK — Kp Dickson [4]. Setting

t = J/K we see that 7T4 vanishes only if p — l"*1 — 1=0 mod p. From this

we see that t' = t/(t — l) and tp' = tp/(tp — 1) =t. Hence, any root of 7r4

must be in GF(p2), and the irreducible factors of Ti must be of degree

at most two. If tEGF(p) then the only root of ir\ is t = 2. Since ita is

of degree p the irreducible factors of 7r4 consist of one linear and

(p — l)/2 quadratic factors. This along with Theorem 3.1 gives

Theorem 4.1. The irreducible quartic congruences belonging to

GF(P) constitute (p + l)/2 conjugate sets under G of which there are



i959l IRREDUCIBLE CONGRUENCES OVER GF(p) 23

(p — l)/2 conjugate sets of order p(p2 — \)/2 and exactly one of order

p(p'-l)/4.

The above theorem is in accordance with Brahana's, Note on ir-

reducible quartic congruences [2]. Furthermore, we might add that if

p = 7, then Ti = (t-2)(t2+5t+2)(ti+2t+5)(t2+t+6).

For m = 5 we have wb = Jp'+l-Jp'K-Jp'-p+lKp+Kpi+\ which

vanishes for t = J/K if

(4.1) tpl+i - tpi - lp -P+1 -(+lsO (mod p).

A root t of (4.1) is either in GF(p) or GF(pi). If tEGF(p) then (4.1)
vanishes if t satisfies

(4.2) 22-3/+l=0 (modp).

If p = 5, then t— — 1 is a double root of (4.2) and it follows that there

exist only one distinct linear factor and exactly p2/ 5=5 irreducible

fifth degree factors of irb. If p = 5K + 2 then (4.2) is irreducible, hence,

there are no linear factors. If p=5K + l then (4.2) is factorable into

two distinct linear factors. In this case irb factors into two linear fac-

tors and (p2 —1)/5 irreducible fifth degree factors. Using Theorem 3.1

with the above results gives

Theorem 4.2. The irreducible quintic congruences belonging to GF(p)

constitute 6, (p2+9)/5, (p2 + l)/5 distinct conjugate sets under G ac-

cording as p = 5, p = SK±l, p = 5K±2.

The above theorem is in accordance with C. B. Hanneken's, Ir-

reducible quintic congruences, [5].

For m = 6 we have

(jp' _ xp'\
J - K   J'

which vanishes for t = J/K if

tp% — 1
(4.3) tp'+p~1 - 1"'-^+^ - tr-1-= 0 (mod p).

t = l is not a root of (4.3) and for p=2 or 3, there is no root in

GF(p), while for p>3 the only root is t = 3. The roots t of (4.3) that

belong to the subfield GF(p2) must be roots of the irreducible quad-

ratics over GF(p) of the form t2+t(s — \)+s2 = 0 (mod p), where

sEGF(p), and, conversely, any root of this irreducible quadratic is

a root of (4.3). It follows that there are (p — 3)/2 irreducible quad-

ratic factors of x« if p=6K+5, and (p —1)/2 if p=3 or p = 6K + l.
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Corresponding to each of these factors is a conjugate set of order

p(p2-l)/3.

The roots of (4.3) that belong to GF(p3) must satisfy the equation

1        1        1
(4.4) _ + _+_= 1.

t       lp      tp

Conversely, any root of (4.4) belongs to GF(p3) and, except for r = 3,

does not belong to GF(p). It follows that the irreducible cubic factors

of ir6 are of the form p3—p2 + • • • , where p = \/t, and their number

is 3 if p = 3 or (p2-l)/3 if p>3.

Since the degree of (4.3) is p3+p — l, it follows that the number of

sixth degree factors of 7T6 is (p3 — p2+2)/6lorp = 6K — 1 and (p3—p2)/6

for p = 3 or p = 6K + l. Corresponding to each of these factors is

a conjugate set of order p(p2 — 1). This gives

Theorem 4.3. The irreducible sextic congruences belonging to GF(p)

constitute (p3+p2+3p + l)/6 distinct conjugate sets under G if p — 6K

+ 1, and (p3+p2+3p — 3)/6 conjugate sets if p = 6K— 1 or p = 3.

The above theorem is in accordance with C. B. Hanneken's,

Irreducible sextic congruences, [6].

For « = 7 we may use Theorem 2.3 along with the number of

classes of irreducible septic forms relative to the subgroup G' of G

and obtain

Theorem 4.4. The irreducible septic congruences over GF(p) con-

stitute 351, (p*+p2 + 19)/7, (p*+p2+l)/7 conjugate sets according as

p = 7, p = 7K+l or p9*7K + l.

5. A classification of the irreducible octic congruences. For the

irreducible octic congruences we find by making use of (1.4) and (1.5)

that

(5.1) rg = (/ - K)p>+P' - Jpi-pt+plKpi- (J - K)p'-p2+p-lKp\/-\

Setting J=pK we see that ir% vanishes if p satisfies

(5.2) (p - 1)"'+"' - Ppi-p+p' - (P - 1)p3-p*+p-i. (P~   )P~P       = 0
(p - \)p - p"-1

(mod p).

The irreducible factors of (5.1) are of degree 1, 2, 4, or 8. To deter-

mine the number of factors of each of these degrees we use the fact

that pEGF(ps). We shall first determine the number of factors of
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degree 4 or less. If pEGF(p*), then p" =p and we see that p must

satisfy the following relation:

oP3+P2+P+i _ „p2+p+i _ „p3+ps+i _ pp*+i _ pp'+p'+p

(5 3)
- pp'+p+i + pp'+p = 0      (modp).

Setting X = l/p, multiplying by Xp'+p2+p+1, and simplifying we ob-

tain

(5.4) 1 - (X + X" + Xp2 + X"3) + XX"2 + (XX"2) = 0       (modp).

Clearly, any solution X of (5.4) will define a solution p of (5.3).

Let p. be a fixed nonsquare of GF(p2) not in GF(p). Then any mark

of GF(pi) is of the form \=A+Bp.112, where A, B are marks of

GF(p2). It follows that \pi=A-Bli1'2, X+Xp2 = 24, XXp2=,42-.BV

and upon substitution into (5.4) we have after simpliyfing

(5.5) [(A - l)2 - B2u] + [(A - I)2 - B2fi]» = 1.

Since A, B, fiEGF(p2), then (A -l)2-B2lx=^EGF(p2), and £

=7i+7251/2, where 71, y2EGF(p) and 5 is a nonsquare of GF(p).

(5.5) then gives £+£p = l which implies that 71 = 1/2. From this it

follows that

(5.6) (A - l)2 - B2y. = 1/2 + yd1'2,

where, of course, y2EGF(p). Since p. is a nonsquare, and since 72 may

assume any one of p different values of GF(p), it follows that there

exist p(p2 + V) distinct sets (A, B) satisfying (5.5). If By^O, then X

is a root of an irreducible quartic, and, hence, defines an irreducible

quartic factor of 7rg. If B = 0, then \EGF(p2) and will define a linear

factor of 7T8 or a quadratic factor of 7r8 according as \<E.GF(p) or

~KEGF(p). To determine the number of such factors we set B =0 in

(5.5), thus obtaining

(5.7) (A - 1)2+ (A - l)2p = 1.

Setting A =a+bS112, a, bEGF(p), into (5.7) and simplifying, we ob-

tain

(5.8) (a - l)2 + 562 = 1/2.

Since —1 is a square or a nonsquare according as p is of the form

4:K + 1 or 4K — 1, we have

Lemma 5.1. (a) If p=4K + l, then there are p + l solutions (a, b) of

(5.8); (b) If p = ±K — 1, then there are p — \ solutions (a, 6) of the
Equation (5.8).

Each of these solutions (a, b) will define AEGF(p2) satisfying
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(5.7). Since there are p(p2 + l) distinct solutions (A, B) satisfying

(5.5), the following theorem is immediate:

Theorem5.1. (a)Ifp = AK + l,thenthereexist\p(p2 + l) -(£ + l)]/4

= [p3 —1]/4 distinct irreducible quartic factors ofira;

(b) If p = 4K-l, then there exist [p(p2 + l)-(p-l)]/4=[p3 + l]/4
distinct irreducible quartic factors of irs.

To determine the number of irreducible quadratic factors of 7r8 we

turn to the solutions (a, b) of (5.8). Clearly, b9*0 unless 2 is a square.

If b=0, then \EGF(p) and will define a linear factor of 7r8. The mark

2 is a square or a nonsquare according as p = 8K±l, or p = 8K±3.

This, along with Lemma 5.1, will give the number of linear and quad-

ratic factors of ir%(J, K).

Since irg(J, K) is of degree p6+p3, we may determine the exact

number of irreducible factors of degree 8 of 7r8. We summarize the

above results in the following table giving the number of irreducible

factors of 7r8(/, K):

p Linear Quadratic Quartic           Octic Total Number

8^+1 2 (p-l)/2 (P3-l)/4 (p>-p)/& (pO-r-2^+3p-|-10)/8

8^-1 ~2 (p-3)/2 (p3+l)/4 (p*-p)/8 (p0-r-2p'+3p+6)/8

&K+i ~~~^~ (p-D/2 (p»+l)/4 (p»-p)/8 (p»+2p3+3p-2)/8

8K-i "~Q (p + D/2 (P»-D/4 (P5-p)/8 (p6+2p=+3p+2)/8

Theorem 3.1 enables one to find the exact number of conjugate sets

of irreducible octic congruences of a given order, e.g., if p = SK + l,

then there exist 2 conjugate sets of order p(p2—l)/8, (p — l)/2 con-

jugate sets of order p(p2 —1)/4, (p3 —1)/4 conjugate sets of order

P(P2 — l)/2> and (ps-p)/& conjugate sets of order p(p2 — l).
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