IRREDUCIBLE CONGRUENCES OVER GF(p)
C. B. HANNEKEN

1. Introduction. In this paper we shall classify the irreducible m-ic
congruerices

(1.1) Ca(®) =2"+ 05"+ -+ anz2t+ an=0 (mod p)

belonging to the modular field defined by the prime p under the
group G of linear fractional transformations

(1.2) T:z= (az’ + b)/(c5 + d)

with coefficients belonging to the same field. Two irreducible m-ic
congruences are said to belong to the same conjugate set if one of
them can be transformed into the other by a transformation of G.
The number of distinct irreducible congruences in a conjugate set
will be referred to as the order of the conjugate set. Since the order of
the group G is p(p?—1), it follows that the order of any conjugate
set will be at most p(p2—1).

A classification of the irreducible binary modular forms under the
group of all binary linear homogeneous transformations of deter-
minant unity in the field GF(p") has been done by Dickson[4]. Since
an irreducible binary modular form over GF(p) of degree m in x
and y defines an irreducible m-ic congruence C(z) over GF(p) with
roots A= (x/y)?, (=0, 1, 2, .-, m—1), in the Galois field
GF(p™), it follows that Dickson’s results provide a classification of
the irreducible m-ic congruences over GF(p) under the subgroup G’
of transformations of G with determinant a square in GF(p). Clearly,
G’ is a proper subgroup of G if p>2, and a conjugate set C under the
group G will consist of, at most, two conjugate sets C/, C{ under
the smaller group G’, i.e., C=C{\UCJ. It is shown in §2 that if
01EGF(p™) characterizes the set C{ under G’, then —¢; will character-
ize the set C{ under G’ and o? will characterize the conjugate set C
under the group G.

In studying the irreducible binary modular forms over GF(p"),
Dickson lists two relative invariants, namely,

0 = (@1 — /(@1 =y,
and
L = xP*y — xy?.
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It is also shown in this paper that the invariant m, (m>2) is an
absolute invariant under the group G of all binary transformations
in GF(p*), and that m, is expressible homogeneously in terms of J
and K, where

(1.3) J=0Q" =g and K = LP"0™D =,

and where r=1 if p=2, r=2 if p>2. The above invariants are in-
variants under the group G provided #» =1 and, hence, may be applied
directly in our problem.

The recursion formula

n 2n
(1.4) F, = QF:, — KFi, (Fi=1,F,= Q)
given by Dickson and the fact that

FmWFM/q.'quFm/q.'qjmx cee

(1.5) Tm =

”FM/qe"Fm/a.'cjck' ..

where m = gy1g3%q5% - - - g4 and where ¢y, - - -, gu are distinct prime
factors >1 of m make it possible to express 7, explicitly as a function
of J and K for any degree m.

The need for such a classification as that given in this paper arises
in the study of the metabelian subgroups in the holomorph of an
Abelian group of order p* and type 1, 1, - - - each having commuta-
tor subgroup of order pm.! A classification of the irreducible m-ic
congruences over GF(p") under the group G of linear fractional trans-
formations with coefficients in GF(p") may be obtained by generaliz-
ing the results of this paper. Since the group problem does not re-
quire such a generalization, and since such a generalization would
be quite simple to make, we do not offer it in this paper. Conse-
quently, we make use of a special case of Dickson’s results; namely,
that where n=1. Furthermore, if n=1, p=2, then G=G’ and Dick-
son'’s classification applies directly, hence, in the sequel we restrict p
to be greater than 2.

In §4 we make use of the previous results for the cases m
=2,.3, - - -, 7. Although classifications relative to G of the irreduci-
ble m-ic congruences for m =3, 4, 5, 6 have been done, it seems in
order here to show how easily this may be done with the techniques
of this paper. In §5 we devote a detailed discussion to the special
case for m=38.

! For a connection between the two problems see Brahana, Metabelian groups of

order p™™ with commutator subgroup pm™, Trans. Amer. Math. Soc. vol. 34 (1934)
pp. 776-792.
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2. A characterization of conjugate sets under G. Since in (1.3)
r=2if p>2, it follows that one may express w,(J, K) given by (1.5)
and (1.4) in terms of ¢ and /. Corresponding to each irreducible factor
I'; of degree r over GF(p) of mn(J, K) is a factor 7., of degree 27 of
mn(g, 1). This factor is factorable over GF(p) into two irreducible
factors ¥® and ¥® each of degree r or is irreducible of degree 2r
over GF(p) according as the root #=J/K of ', is a square or a non-
square in GF(p). If 7, is factorable and 8 is a root of ¥, then —@
is a root of ¥?. If v,, is irreducible and 8 is a root, then —@ is also
a root. Conversely, corresponding to any two roots £ and —§¢ of
mn(q, 1) is an irreducible factor of m,(J, K).

In deciding whether or not two binary forms ¢, and ¢, are conjugate
relative to G’, Dickson shows that one may employ a root uy=x/y
of $1=0 and a root us=x/y of ¢o=0 and determine corresponding
values of oy =q1/l and o2 =¢2/l; for p; and p., respectively. According
as these values ¢, and o, are roots of the same irreducible factor or
different irreducible factors of (g, /) the given forms ¢, and ¢, belong
to the same or different conjugate sets.

Let C,,(2) and C,,(2) be the two irreducible m-ic congruences de-
fined by ¢:1(x, ¥) and ¢2(x, ), respectively. Since u; and u. are roots of
C.,(2) and C,,(2), respectively, we have, by making use of (1.3) and
the fact that z=x/y, the following important result:

(#1:2 — ) (us — #’f)
W7 = )@ — w)

(J/K); (Q£/li)2 = 0'i2= ™, =

(1.6)
2 p’ .
= (ur W pits ), (t=1,2).

If C,,(2) and C,,(z) are conjugate under G and if i T =pu, for TEG,
then, since the cross ratio 7 is an invariant under G, we have o} =03.
If, further, C,,(z) and C,,(2) are not conjugate under G’, then ¢; and
a, are not roots of the same irreducible factor of m.(g, /) and o,70s.
It follows since o =02 that ;= —03, and that o, and o are roots of
v® and v®, respectively.

Since any conjugate set under G consists of, at most, two distinct
conjugate sets under G’, and since there are as many conjugate sets
of irreducible m-ic congruences under G’ as there are distinct ir-
reducible factors of mn(g, 2), we have along with the above results the

following:

THEOREM 2.1. There are as many distinct conjugate sets of irreducible
m-ic congruences over GF(p) under the group G of linear fractional trans-
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formations with coefficients in GF(p) as there are distinct irreducible
factors over GF(p) of the invariant w.(K, L).

Since the corresponding value ¢,=g¢/! of a root u of an irreducible
m-ic C,(2) is a root of 7,.(q, [) and is in GF(p™) and, conversely, since
any root g,=gq/l of ma(g, ) defines an irreducible m-ic congruence
having a root u whose corresponding value of ¢/l is equal to a,,
it follows that any root 7 =J/K of m.(J, K) will define an irreducible
m-ic congruence C,(2) having a root u such that

(1.7) Tw = (u?'u?, pp’).

Conversely, the cross ratio 7, = (u?'u®, uu?’) of the roots u, p?, - - -,
p*™ " of an irreducible m-ic C,(z) will be a root of an irreducible factor
of (K, L). This gives the following:

THEOREM 2.2. Two irreducible m-ic congruences C,(2) and C.,(2)
having roots uy and us, respectively, are conjugate under G if, and only
if, the corresponding cross ratios w,, and w,, as defined by (1.6) are
roots of the same irreducible polynomial over GF(p).

Since the value o =g¢/! for a root u=x/y of an irreducible binary
form ¢(x, ¥) belongs to GF(p™) and since m,=a?, it follows that any
irreducible factor I, of w,(J, K) is of degree m or a divisor of m, i.e.,
r[ m. If the root m,=J/K of I, is a square in GF(p"), then I, defines
two distinct irreducible factors ¥® and ¥® of wn(g, I). These factors
each define distinct conjugate sets relative to G’. Hence, in this case
the conjugate set defined by I, under G splits into two distinct ones
relative to G'. If, however, m, is a nonsquare in GF(p"), then the cor-
responding factor 4. of m,(g, J) is irreducible over GF(p) and the cor-
responding conjugate set defined by I', does not split into two dis-
tinct sets relative to G’. This gives the following:

THEOREM 2.3. Let S be a conjugate set of irreducible m-ic congruences
over FG(p) under the group G of all linear fractional transformations
with coefficients belonging to GF(p) and let C.(z) having a root u be any
congruence belonging to S. Let the cross ratio m, = (u?'u?, up?") be a root
of the irreducible polynomial T', of degree r over GF(p). Then S will
split into two distinct conjugate sets under the subgroup G’ of all trans-
formations of G whose determinant is a square if, and only if, the mark
mx of GF(p") is a square in GF(pr).

As a direct result of this theorem we see that if , is a nonsquare of
GF(pr) then 2rlm since the degrees of the irreducible factors of
7wm(¢, 1) must divide m. Hence, m must be even. Conversely, if m is
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odd, then every root of m.(K, L) must be a square. This along with
Theorem 2.3 gives

THEOREM 2.4. If m is an odd degree, then every conjugate set S rela-
tive to G splits into two distinct conjugate sets relative to G' and the
number of distinct conjugate sets relative to G is one-half the number
relative to G'.

3. Number of conjugate sets of a given order relative to G. Since
the group G is of order p(p?—1) it follows that any conjugate set S
will have order at most p(p2—1). If S contains less than p(p2—1)
distinct m-ics, then there exist transformations of G that carry each
m-ic into itself. Such transformations must be of order d where d|m.
If d is the largest order of a transformation that carries an m-ic into
itself, then S must be of order p(p2—1)/d. Let m=r-d and S be a
conjugate set of order p(p2—1)/d containing S,(z). Then there exists
a transformation T&G of order d that transforms S,(z) into itself
and, hence, u- T=p?, pP-T=p”'H, -+ - . By making use of (1.6) we
see that

B.1)  mo=me = @, W) = (' T T, p Tu?' - T).

Hence, m,&EGF(p") CGF(p™) and is a root of an irreducible poly-
nomial of degree 7 over GF(p). This gives

THEOREM 3.1. If m=rd, then the irreducible factors of wm(K, L) of
degree r define distinct conjugate sets of order p(p?—1)/d. Conversely,
the conjugate sets of order p(p2—1)/d are defined by the irreducible fac-
tors of wm(K, L) of degree r.

4. Number of conjugate sets of irreducible m-icsform=3,4, - - -, 7.
Clearly, if m =1, 2 the m-ic congruences are all conjugate relative to
G. For m =3 we see by Theorem 2.3 that there exists only one conju-
gate set relative to G since there are in all exactly two conjugate sets
relative to G’. This is in accordance with Brahana’s On cubic congru-
ences [1].

For m=4 we have my=J?—J»~1K—K? Dickson [4]. Setting
t=J/K we see that m, vanishes only if £ —¢»~1—1=0 mod p. From this
we see that ?=¢/(t—1) and *’ =¢2/(t»—1) =¢. Hence, any root of m
must be in GF(p?), and the irreducible factors of 74 must be of degree
at most two. If tEGF(p) then the only root of m4 is £=2. Since w4 is
of degree p the irreducible factors of w4 consist of one linear and
(p —1)/2 quadratic factors. This along with Theorem 3.1 gives

THEOREM 4.1. The irreducible quartic congruences belonging to
GF(p) constitute (p+1)/2 conjugate sets under G of which there are
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(p—1)/2 conjugate sets of order p(p2—1)/2 and exactly one of order
p(p*—1)/4.

The above theorem is in accordance with Brahana's, Note on ir-
reducible quartic congruences [2]. Furthermore, we might add that if
p=7, then my=(—2)(t2+5¢+2) (242t +5) (¢*+¢t+6).

For m=5 we have my=J?"+—Jo'K — J'-»+1K» 4 K?™+1 which
vanishes for t=J/K if

(4.1) Pt el L 1 =0 (mod p).
A root ¢ of (4.1) is either in GF(p) or GF(p%). If t&GF(p) then (4.1)

vanishes if ¢ satisfies
4.2 #—-3t+1=0 (mod p).

If p=35, then t= —1 is a double root of (4.2) and it follows that there
exist only one distinct linear factor and exactly $2/5=35 irreducible
fifth degree factors of ws. If p =5K 42 then (4.2) is irreducible, hence,
there are no linear factors. If p=5K 11 then (4.2) is factorable into
two distinct linear factors. In this case w5 factors into two linear fac-
tors and (p2—1)/5 irreducible fifth degree factors. Using Theorem 3.1
with the above results gives

THEOREM 4.2. The irreducible quintic congruences belonging to GF(p)
constitute 6, (p2+9)/5, (p2+1)/5 distinct conjugate sets under G ac-
cording as p=35, p=SK+1, p=5K+2.

The above theorem is in accordance with C. B. Hanneken’s, Ir-
reducible quintic congruences, [5)].
For m =6 we have

J?® — K
e = JPi+r—1 _ Jpi-ptte—1Kp? Jr1Ke® — K» (___—. s
J—K
which vanishes for t=J/K if
3 3__2 tp. -1
(4.3) el — el gl P =0 (mod p).

t=1 is not a root of (4.3) and for p=2 or 3, there is no root in
GF(p), while for p>3 the only root is ¢=3. The roots ¢ of (4.3) that
belong to the subfield GF(p?) must be roots of the irreducible quad-
ratics over GF(p) of the form #2+4¢(s—1)+s?2=0 (mod p), where
s&GF(p), and, conversely, any root of this irreducible quadratic is
a root of (4.3). It follows that there are (p —3)/2 irreducible quad-
ratic factors of me if p=6K 435, and (p—1)/2 if p=3 or p=6K+1.
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Corresponding to each of these factors is a conjugate set of order

p(p*—1)/3.
The roots of (4.3) that belong to GF(p?) must satisfy the equation

(4.4) =1

Conversely, any root of (4.4) belongs to GF(p®) and, except for =3,
does not belong to GF(p). It follows that the irreducible cubic factors
of mg are of the form p3—p?+ - - -, where p=1/¢, and their number
is 3if p=3 or (p2—1)/3if p>3.

Since the degree of (4.3) is p*+p —1, it follows that the number of

sixth degree factors of mgis (p3— p2+2)/6 forp =6K —1 and (p*—p?)/6
for p=3 or p=6K+1. Corresponding to each of these factors is
a conjugate set of order p(p2—1). This gives

THEOREM 4.3. The irreducible sextic congruences belonging to GF(p)
constitute (p3+p2+3p+1)/6 distinct conjugate sets under G if p=6K
+1, and (p*+p2+3p—3)/6 conjugate sets if p=6K—1 or p=3.

The above theorem is in accordance with C. B. Hanneken's,
Irreducible sextic congruences, [6].

For m=7 we may use Theorem 2.3 along with the number of
classes of irreducible septic forms relative to the subgroup G’ of G
and obtain

THEOREM 4.4. The irreducible septic congruences over GF(p) con-
stitute 351, (p*+p2+19)/7, (p*+p2+1)/7 conjugate sets according as
p=T7,p=TK+1o0or p#£7TK+1.

5. A classification of the irreducible octic congruences. For the
irreducible octic congruences we find by making use of (1.4) and (1.5)
that

(5.1) ms= (J — K)+’ — Jo* '’ Ko’ — (J — K)p*r* 1Kol
Setting J=pK we see that 75 vanishes if p satisfies
(P _ 1)”5— pps"'p‘
(p — 1) — pr!
(mod p).

0

(5.2) (p — 1)'+s" — pp'—p42’ — (p — 1)p*—2rL.

The irreducible factors of (5.1) are of degree 1, 2, 4, or 8. To deter-
mine the number of factors of each of these degrees we use the fact
that pEGF(p?). We shall first determine the number of factors of
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degree 4 or less. If pEGF(p*), then p? =p and we see that p must
satisfy the following relation:

p,3+p2+,,+1 _ p,,2+,,+1 - pp‘+p’+1 — pp’+1 - p,,t+,,s+p

(5.3) — pPHetl L ppr =0 (mod p).

Setting A =1/p, multiplying by A\?*+?*+»+1 and simplifying we ob-
tain
(5.4) L= QA+FNFNEFN) M+ V) =0 (mod p).
Clearly, any solution X of (5.4) will define a solution p of (5.3).

Let u be a fixed nonsquare of GF(p?) not in GF(p). Then any mark
of GF(p*) is of the form A=4 4 Bu'/?, where 4, B are marks of
GF(p?). It follows that N»'=A4 —Bpul/2, N4N"=24, \\?"=42—B%
and upon substitution into (5.4) we have after simpliyfing

(5.5 [(4 — 12— Bf] + [(4 — 1) — Bl = 1.

Since 4, B, pnEGF(p?), then (4 —1)2—BWu=(€EGF(p?), and &
=v1+7v20!/2, where v1, v.EGF(p) and 8 is a nonsquare of GF(p).
(5.5) then gives £+£7=1 which implies that y,=1/2. From this it
follows that

(5.6) (4 — 1)2 — B = 1/2 + 792,

where, of course, y:&GF(p). Since u is a nonsquare, and since y; may
assume any one of p different values of GF(p), it follows that there
exist p(p%+1) distinct sets (4, B) satisfying (5.5). If B0, then \
is a root of an irreducible quartic, and, hence, defines an irreducible
quartic factor of ws. If B=0, then N\&GF(p?) and will define a linear
factor of ms or a quadratic factor of ms according as NEGF(p) or
MNEGF(p). To determine the number of such factors we set B=0 in
(5.5), thus obtaining

5.7 (4 —-124 (4 — 1) =1,

Setting A =a+b6'/?, a, bEGF(p), into (5.7) and simplifying, we ob-
tain

(5.8) (a — 1)2 4 802 = 1/2.

Since —1 is a square or a nonsquare according as p is of the form
4K +1 or 4K —1, we have

LEmMMA 5.1. (a) If p=4K+1, then there are p+1 solutions (a, b) of
(5.8); (b) If p=4K—1, then there are p—1 solutions (a, b) of the
Equation (5.8).

Each of these solutions (a, b) will define A EGF(p?) satisfying
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(5.7). Since there are p(p%+1) distinct solutions (4, B) satisfying
(5.5), the following theorem is immediate:

THEOREM 5.1. (a) If p=4K +1, then there exist[p(p2+1) — (p+1) ] /4
= [p¥—1]/4 distinct irreducible quartic factors of ms;
(b) If p=4K —1, then there exist [p(p?+1) —(p—1)]/4=[p*+1]/4

distinct irreducible quartic factors of ms.

To determine the number of irreducible quadratic factors of w5 we
turn to the solutions (g, b) of (5.8). Clearly, 50 unless 2 is a square.
If =0, then A\EGF(p) and will define a linear factor of ms. The mark
2 is a square or a nonsquare according as p=8K +1, or p=8K +3.
This, along with Lemma 5.1, will give the number of linear and quad-
ratic factors of ws(J, K).

Since ws(J, K) is of degree p*+p3, we may determine the exact
number of irreducible factors of degree 8 of ms. We summarize the
above results in the following table giving the number of irreducible
factors of ms(J, K): '

4 Linear | Quadratic | Quartic Octic Total Number

8K +1 2 (p-=172 | -1/ | (°—9)/8 | B*+2p°+3p+10)/8

8K—1 2 =372 | @*+1)/4 | (*—p)/8 | (P*+2p°+3p+6)/8

8K+3 0 (=172 | *+1)/4 | (B°—p)/8 | (P*+2p°+3p—2)/8

8K—3 0 P+1/2 | (*—1/4 | (*—p)/8 | (P*+2p°+3p+2)/8

Theorem 3.1 enables one to find the exact number of conjugate sets
of irreducible octic congruences of a given order, e.g., if p=8K -1,
then there exist 2 conjugate sets of order p(p2—1)/8, (p—1)/2 con-
jugate sets of order p(p2—1)/4, (p*—1)/4 conjugate sets of order
p(p2—1)/2, and (p*—p)/8 conjugate sets of order p(p?—1).
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