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We shall prove that nondegenerate quadratic forms in a countable

number of variables are equivalent over an algebraic number field F

if and only if they are equivalent over all real completions of F. Thus,

in virtue of Savage's description of forms over the real numbers [7], a

class of quadratic forms is characterized in our case by determining

positive and negative indices at all the real completions of F. On the

one hand this generalizes to infinite dimensions the Minkowski-

Hasse-Witt theory of ra-ary forms, while on the other hand it extends

to number fields the countable work of Everett, Ryser and Kaplan-

sky. The results of Everett and Ryser are for positive definite rational

forms [5]. Kaplansky [6] deals with arbitrary forms over the rational

numbers and also over any field in which every form in k variables

represents 1. As examples of the latter we have the local fields and

the function fields in one variable over finite constant fields [l ].

We consider a field F (characteristic 9*2) acting on a vector space

V of at most countable dimensions over F. By a quadratic form q on

V is meant [4] the mapping obtained by putting q(x) =b(x, x) where

b(x, y) is any given bilinear form on VXV. The new bilinear form

1   . ,
s(x, y) = — \b(x, y) + b(y, x)\

is symmetric and defines the same q(x). Since

(1) s(x, y) = — {q(x + y) - q(x) - q(y)},

the form s(x, y) is uniquely determined by the given q. The forms q, q'

on V, V are said to be equivalent if there is an isomorphism x of V

onto V such that q'(irx) =q(x). This is the same as saying s(x, y)

= s'(wx, nry) for all x and y in V, by (1). We make it a rule that

different forms belong to different spaces so that, without fear of

confusing the notation, we can write x-y = s(x, y) and x2 = q(x) in V.

Note that V~V if and only if V and V have bases with the same

multiplication table. Any symmetric multiplication table defines a

unique form on V.

All given spaces are assumed nondegenerate.   V=U@W means
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that V is the orthogonal direct sum of U and W. And U and W are

again nondegenerate. If U is any finite dimensional nondegenerate

subspace of V, then V= U(BUX. It is known that V always has an

orthogonal basis but, generally speaking, it need not have an ortho-

normal one. For further details the reader is referred to Kaplansky

[6].
Let Fa be an extension of F. We call the metric Fn-space Va an

extension of V with respect to Ftt if Va is generated by V. Since V is

nondegenerate, any orthogonal basis for V is an orthogonal basis for

Va so that any two extensions of V are isometric. That V always has

an extension is easily seen by constructing the F0-space with basis

(x) and metric given by (xt-xf). If Uand V are isometric, then so are

Ua and Va.

From now on F will be a finite algebraic number field. We denote

by Q the total set of inequivalent primes of F and we let 5 be the

finite set of real primes in Q. We use | | p for a valuation and F9 for

the completion associated with the prime p. It follows from [6] that

V9 has an orthonormal basis for all finite or complex primes. For a

real p there is a decomposition Vf = U® V in which U and (— 1 o W)

have orthonormal bases, and we call p„(F)=dim U, nv(V)=dim V

the positive and negative indices at p. Note that Fp~Fp' if and only

if their indices are the same at p, by [7]. For any orthogonal basis

(x) of V, the positive index at p is the number of positive x2EFf ob-

tained by letting x run through (x); and similarly with the negative

index.

Theorem. The countable dimensional spaces V and V are isometric

if and only if they have the same positive and negative indices at all real

primes of F.

Proof. We need only prove the sufficiency. Write V in the orthog-

onal basis V= ®TFxli. We shall first show how to reduce the problem

to the case where

(2) p9(V) = 0 or  oo,        »„(F) = 0 or  oo

holds at all p£S. To this end let us suppose that 0 <pa( V) < <x> holds

for some particular prime aES. Using the Approximation Theorem

[2] we find an e£F such that

I e - 1 I, < 1 when pv(V) > 0, p E S,

I t + 1 |p < 1 at all other p E S.

Thus eEFp is positive in the first instance, negative in the second.

Choose j^5 and so large that pp(t/)>0 whenever Pv(V)>0 with
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PES, where U = Fxi® ■ ■ ■ ffiFx,-. Then iEU$ at all pES in virtue

of the definitions of t and U, and eEUl when pES by Theorems 15
and 16 of [8]. Hence e=x2EU2QV2 by Theorems 15 and 19 of [8].

Since Fx is finite dimensional we have

V = («) © V,       V = (t) © V',

the second equation following by symmetry. Then p$(V) =pp(V') and

n»(V) =Mp(P) hold at all pES, while

pa(V') = #,(F) < pq(V) = #,(n-

Repeat this until the positive index at a is 0. Now do the same thing

at all other primes with finite positive or negative index. After a finite

number of steps we get V=Wi®W, V = W{ © W' with Wi~W[ and

pv(W) = P)(W) = 0 or oo,       n9(W) = n9(W) = 0 or oo

at all pES. In effect, this allows us to assume that V and V satisfy

(2). We make this assumption from now on. This ends the reduction

of the problem.

Let T denote those real primes at which Fand V have both indices

infinite, let P denote the primes for which nt(V) =0=n9(V), let N

denote the primes for which pv(V) =0=pf(V). Thus 5 is the disjoint

union S=TVJP[UN. Now use the Approximation Theorem to define

an eiEF such that

I 1^1      V, /+1 if PGTWP,
|«i-*|,<l    where   ep = \_l]ipeN,

Similarly define an e2EF such that

I l^i      h j-lilpETKJN,
|*-*|,<1    where    e> =  |+1 .f p £ p

We put €2 = €3 = €4 = e&. We shall show that V has a basis

(3) V = © 7? A7    with    A7* = «,-    for   |isi mod 5.
1

Suppose that Xu ■ • ■ , Xik have been defined for k^O in such a

way that

ik

XjEU = © FA7       for 1 g ;' U,
(4) 1

A7 =e,- for n = i mod 5.
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We must define Xik+i, • • • , X^k+i). Let x, be the first element of the

basis (x) which is not in U. So s^k + l. Since Z7 is finite dimensional

we can write V= U®UX. Write x,=y+z with yEU, zEUx, and

then put H=Fz ii zVO, and put H-Fz + Fz' with z'EUL, zz'^0,

if 22=0. In the latter case H is a hyperbolic plane. We write V= U®H

® U'. Now it is easily verified, using Theorems 15, 16 and 19 of [8],

that the quadratic form ei© ■ • • ©e6 represents H. Hence

(5) ei © • • • © «6 ~ H ® J.

On the other hand, any space with the same indices as V must repre-

sent €1, e2 (indeed, any sufficiently large finite dimensional subspace

will do so) and hence it must represent eiffi • • • ffie6; in particular,

U' has a component /. Therefore V= U® (H®J) © U". Using (5) we

define Xik+i, • • • , Xi{k+X) so that H®J= ®5xFXu+n and -Aljt+„ = e„.

This has the required properties. In this way define X^ (1 ^/x< 00).

This is a basis for V which satisfies (3).

Obviously all this can be done for V too. Thus

V = ® FZ;    with    (XI)2 = u       for u = i mod 5.

Hence F~F'. This proves the theorem.
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