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1. Statement of results. Let M be a complex manifold of complex

dimension 2w + l. Let { Ui} be an open covering of M. We call M a

complex contact manifold if the following conditions are satisfied:

(1) On each [/,- there exists a holomorphic 1-form w,- such that

Wi/\(do3i)n is different from zero at every point of Ui.

(2) If UiC\Uj is nonempty, then there exists a nonvanishing

holomorphic function /,-,- on Ui<~\ U, such that w< =/•/<*>/ on Ui(~\ U,.

We shall prove the following

Theorem. If M is a complex contact manifold of complex dimension

2n + l, then

(1) The structure group of the tangent bundle of M can be reduced to

U(l)X(Sp(n)®U(l)).
(2) Let Ci(M) be the ith Chern class of (the tangent bundle of) M and

a the characteristic class of the line bundle over M defined by {/,-/}. Then

1 + Ci(M) + Ct(M) + ■ ■ ■ = (1 + a)(l + na+ •■•).

In particular, Ci(M) is divisible by re + 1; Ci(M) = (n + l)a.

(3) There exists a principal fibre bundle P over M with structure

group U(l) such that P is a real contact manifold. Moreover, both P and

a real contact form on P can be constructed in a natural way from M and

ut.

Chern has shown in [2] that the structure group of the tangent

bundle of an orientable real contact manifold of real dimension 2« + l

can be reduced to 50(1)X U(n)(=SO(l)X(SU(n)® U(l)). Hence,
(1) of our theorem is an analogue of the result of Chern.

At the end of this paper, we shall give two examples of (3).

2. Proof of (1).
Let TX(M) be the complex tangent space to Af at a point x. As-

sume x to be in Z7,-. As Wi9*0 at x, Wj=0 defines a 2«-dimensional

complex vector subspace Fx of TX(M). Let P be the vector bundle

over M with fibres Fx. Let P be the line bundle T(M)/F. Then,

T(M)^F®E (Whitney sum). From the definition of contact form,

it follows that <&>,-, on Fx, is of maximal rank and is defined up to a

factor, i.e.,

dotj | Fx = fjidon I 77.
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Now, (1) follows immediately from the definition of Sp(w). (See, for

instance, [3].)

3. Proof of (2). From cOi=/,ycoy, it follows easily that

m A (do>,)n = (fa)n+1o)j A {da,)".

Since cojA(<k*>»)" 1S a holomorphic form of degree 2n + l, {/«(n+1>}

defines the canonical bundle K of M. The characteristic class of K is

-cx(M), (see for instance [l, §29]). The line bundle E=T(M)/F is

defined by {/,;•}. From FJ = F_(n+1), we obtain

cx(M) = (n + l)a

Let Ci(F) be the ith Chern class of the vector bundle F. By the Whit-

ney Duality Theorem,

1 + cx(M) + c2(M) + ■ ■ • = (1 + a)(l + cx(F) + c2(F) +■■■).

From cx(M) =(n + l)a, it follows that Ci(F) =na.

4. Proof of (3). Let L be the line bundle over M defined by {/y1}

and p the projection of L onto M. Let hi'. p~1(Ui)-*UiXC be the

coordinate map. If vELx and xG UiC\ Uj, then

hi(v) =  (x, Zi), hj(v)  =  (X, 0y), Zi = fjiZj.

Hence

Zip*(o>i) = zrp*(a>j),

showing that {zj-p*(co,)} defines a holomorphic 1-form co on L.

A simple calculation shows that

(w + co) A (do> + dw)2n+1

= .4(ziZ.-)n(Mz,- - Zidzx) A p*(«.- A (dut)" AwiA (<*«0n),

where ,4 =(2w +1)!/(«!)2.

We define a bundle F as follows. Let Bx be a positive definite her-

mitian form on Lx differentiable with respect to x. Let

Fx= {v E Lx; Bx(v, v) = l},

i.e., Px is a circle in Lx. Then F = UiSm Px is a principal fibre bundle

over M with group U(l).

We shall show that the restriction of co+w to P defines a real con-

tact structure on P. If Px is given by

z$i = b(x)2 (b(x) > 0),

then

(zidzi — Zidzi) = 2zidzi — 2b-db.
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As UiA(do)i)nA<i>iA(do>i)nAdb is a form of degree 4w+3 (>real di-

mension of M) on M, it vanishes identically. Hence, the restriction

of (co+co) A(du+du)2n+1 to P is

2Ab2nZidzi A p*(o>i A (dui)n A «< A (du,)n),

which is clearly different from zero at every point of P.

Remark. Let Qx be the disk defined by the circle Px. Then P is

the boundary of Q = \)QX and (co+co) is of maximal rank on Q except

at the points of M, as easily verified. This agrees with a result of

Gray [4].

5. Examples.
(1) Complex projective spaces of odd dimension. Let z\ z2, • • • ,

z2n+1, 22n+2 be a coordinate in the (2re+2)-dimensional complex vector

space C2n+2 and let P2n+i(C) be the (2re + l)-dimensional complex

projective space. Then, C2n+2 — {o} is the principal fibre bundle asso-

ciated with a line bundle L over P2„+i(C). Set

co = zHz2 - z2dzl + ■ ■ ■ + 22"+W+2 - z2»+W*+1.

Let { Ui} be an open covering of P2n+i(C) and s,- a holomorphic cross-

section of the principal bundle C2n+2—{o} over Ui. Set co, = sf(co).

Then {co,} defines a complex contact structure on P2n+i(C). Consider-

ing C2n+2 as the real (4re-f-4)-dimensional vector space Rin+*, we ob-

tain the (4re-f-3)-dimensional real projective space P4n+3(P). P4t.+3(P)

is a principal fibre bundle over P2„+i(C) with structure group U(l).

Every odd dimensional real projective space is a real contact mani-

fold (see for instance [4]). The standard real contact form on Pin+z(R)

is the one derived from the contact form of P2n+i(C) in the manner

described in the proof of (3).

(2) Complex projective co-tangent bundles

Let V be a complex manifold of dimension « + l and co a holo-

morphic 1-form on the dual complex tangent bundle T(V) ( = the

space of complex co-tangent vectors) defined by

co(«) = n(fcr(«)), uETv(T(V))

where w is the projection of t(V) onto V and 5w is the differential of

7r; Stt: T(T(V))-*T(V). In terms of local coordinate z°, z1, • • • , zn

of V and the induced coordinate z°, z1, • • • , zn, f 0, fi, • • • , $n of

T(V),
co = forfz0 + ficfz1 +-h Sndzn.

The fibre of t(V) being the (re+ 1)-dimensional complex vector

space, we construct in a natural way a fibre bundle over V whose
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fibre is the w-dimensional complex projective space (complex projec-

tive co-tangent bundle). This bundle of complex dimension 2n + l is

our M. Considering the fibre of T(V) as the (2n+2)-dimensional

real vector space, we take as F the co-tangent sphere bundle over V

(i.e., the fibre of P is a sphere in the fibre of T(V)).

T(V) — V is the principal fibre bundle associated with a line bundle

L over M. The definition of the complex contact structure on M is

similar to the one in the first example. The classical real contact

structure on the co-tangent sphere bundle F is the one derived from

the complex contact structure on the complex projective co-tangent

bundle Mas described in the proof of (3).

Bibliography

1. A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, I,

Amer. J. Math. vol. 80 (1958) pp. 458-538.
2. S. S. Chern, Pseudo-groupes continus infinis, Colloque de Geome'trie Diff.,

Strasbourg 1953.

3. C. Chevalley, Theory of Lie groups I, Princeton, 1946.

4. J. W. Gray, Some global properties of contact structures, to appear.

Institute for Advanced Study

FIXED POINTS FOR MULTI-VALUED FUNCTIONS ON

SNAKE-LIKE CONTINUA

RONALD H. ROSEN1

1. Introduction. A multi-valued function from a space X into a

space Y is a point to set correspondence. Hamilton has shown that

snake-like continua have the fixed point property with respect to

maps [2]. Ward has extended this to show that snake-like continua

have the fixed point property with respect to continuous multi-

valued functions [6]. The results of this paper establish that a more

general class of spaces, those which are inverse limits of arcs, have

even stronger properties with respect to multi-valued functions.2

2. Multi-valued functions. All functions are multi-valued unless

otherwise indicated. A map will always be a continuous single-valued

function.
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