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Let k be an algebraic number field of finite degree or an algebraic

function field of dimension 1 with finite constant field and let K/k

be a finite, separably Galois extension field. We call an algebraic ex-

tension field L, not necessarily Galois nor necessarily of finite degree,

of K an everywhere locally abelian extension, denoted in the follow-

ing as EL-abelian extension, for brevity, of K over k, if and only if

for every finite extension L' of K in L and every valuation v of L it

holds that the completion field Ll of V with reference to v is a com-

position field of Kv and an abelian extension Mv oi kv in Ll, where we

denote by kv and Kv the closures of k and K in Ll, respectively.

Let fi be an algebraic closure of K, Bic/k the maximum separably

EL-abelian extension of K/k in fi, Cic/k the maximum separably cen-

tral extension of K/k in fi (i.e. the maximum extension CK/k which is

separably normal over k, contains K, and has the Galois group of

Cicik/K in the center of the Galois group of Cuik/k), Ik and Ik the

groups of the ideles of k and K, Ak and Ak the maximum separably

abelian extensions of k and K in fi, respectively. Let DK/k = BK/k

f\CK/k- Then, the norm residue symbol ok in Ak/k is, if restricted

into NK/klK, extensible into a homomorphism aK/k of Nk^Ik into

the Galois group G(DK/k/K). We shall study in the present article

arithmetical meanings of the extensibility.

In §1, we shall define aK/k precisely, in §2, study the kernel and

obtain a principal genus theorem (Theorem 2), from which will follow

easily a certain generalized formulation of some fundamental theo-

rems in the class field theory.1 Combining it with a known property2

of the quotient group of the connected component of the unit ele-

ment of the idele class group by the natural image of the maximal

compact subgroup of the connected component of the unit element

of the idele group, we shall obtain, in §3, our main result (Theorem

8), which concerns total norm residues in the principal idele group

of k for K/k, and which is, the author thinks, an idele-theoretic re-

construction of a research of Scholz.3

Received by the editors July 25, 1958.
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5 Cf. [4].

>Cf. [3].
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1. Definition of <rK/k- Let k, K, fi, BK/k, CKik, DK/k, Ik, Ik, Ak, AK,

and cTfc be, throughout the present article, as stated above. Let M be

the set of the prime divisors of k, kp, k* and fip with p in M the com-

pletion field of k for p, the multiplicative group of the nonzero

elements of kv and an algebraic closure, not complete, of kv, respec-

tively. Let V be the set of the normalized valuations of fi, p with p

in M the set of the normalized valuations of fi corresponding, if

restricted into k, to p, N a complete system of representatives of

the classification of V as the set-theoretic direct sum of p with p in

M. Clearly, there exists a canonical one-to-one correspondence t of the

set p and the set [p] of the isomorphisms of fi/& into fip/&, we denote

by v* with n in F the isomorphism i(z/) of fi into fip, and let Kp

= kpv*iK) with v in pf\N and K* the multiplicative group of the

nonzero elements in Kp, Ap the maximum abelian extension of kp in

fip, and <rp the norm residue symbol in AP/kp. As is well known, crp

gives canonically an isomorphism op of NKpikpK* into the Galois

group GiKpAp/Kp) and we define for v in pC\N an isomorphism <r,

of NKpikpK* into G(DK/k/K) such that it holds for every a in DK/k

and every a in NKp/kpK*

(1) v*(cvp(a)a) = o-;(a)v*(a).<

As, from the supposition, G(DK/k/K) lies in the center of G(DK/k/k),

<rv is independent from the choice of v in p, and we denote it, changing

the notation, by ap. Then, it holds clearly for every 21 in Kp (in Ik)

(2) **'(*) = o-PiNKPlkpK),

where we denote by ak the norm residue symbol in DR/k/K, by P a

prime divisor of p in K, by Kp the multiplicative group of the non-

zero elements in the completion field KP of K for P. Let It be the

restricted direct product of k* with p in M, contained in Ik, and we

define a mapping cr of lir\NK/klK into GiDK/k/K) by

(3) ff(0pi(tP, ■ • • Op.) = ffp,(<lpi)<r5s(a,,j) • • • o-p,(Op.)

for ap,. in A^/^.A*. Clearly, <r is a homomorphism and aiI*r\NKiklK.)

is dense in GiDK/k/K). Let a = (ap) be an idele in Nr/Jk- We can

take an idele S3 = (93p) in Jx such that a = Ax/*93 and 93q = 1 for every

prime divisor Q of K not corresponding to any of the restrictions into

K of the valuations in N. Then, it follows from (2) the following

formal equality

(4) n^(®p) = n^(ap)
_ P V

* Cf. [4].
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where P and p run over all prime divisors of K and of k, respectively.

As the left product has a limit in G(DK/k/K), the right one has the

same limit and we extend continuously into a homomorphism <7.r/*

of NkiJk into G(DK/k/ K), defining for u = (up) in NK/kIK o-K/k(a.) as

(5) o-K/k(a) = II ff5(0-
V

Evidently, it follows from (2) and (5) the following fundamental

equality, which we state as

Theorem 1.

<r*(2t) = o-Klk(NKlkW) (21 E Ik).

2. The kernel of ffK/k- Let L be a finite separably algebraic exten-

sion of k in fi, Galois over k and abelian over K. Let A, B, C, and D

be Ak<~^L, BKik^L, Ck/^L, and DK/k^L, respectively, and IL,

fK/k, o\ be the group of the ideles of L, the homomorphism of

NK/klK into the Galois group G(D/K) obtained canonically from

OK/k, and the norm residue symbol in L/K, respectively. Let H(L/K)

and F be the inverse images in Ik by o\ of G(L/L) and G(L/D),

respectively, and F* be the inverse image in Ik by NK/k of NK/kH(L/K).

Then, there exists for (5 in F* an idele § in H(L/K) such that A^/iS

= NKik& and we obtain from Theorem 1

(6) <rK(S) = <?Kik(NKik§) = o-K/k(NK/k§) = <rx(§) = 1,

where we denote by oK the norm residue symbol in D/K. Thus,

(7) F* Q F.

As F*Z)H(L/K) and, from the supposition, L is of finite degree over

K, there exists a subfield L' of L, corresponding to F*. Let P for p in

M be the prime divisor of K, corresponding to the restriction into K

of v in pC\N, and Ik.p the subgroup of Ik consisting of the ideles

with 1 as the component everywhere except at P. We shall identify

in the following, without contradiction, Ik.p and K*, when we shall

deal with local properties at p, so it holds for 2tj, in Ik,p = K*

(8) #*,/*,», = NkiX,.

Let Lp = kpv*(L) with i; in pC\N, Bp the maximum abelian extension

of kp in Lj,, L* and 5* the multiplicative groups of the nonzero ele-

ments in Lp and Bp, respectively. Then, NBp/krB* = NL]>ikpL*. As

KPr\H(L/K) =NLplKpL*,6 the intersection FP = F*r^KP( = F*rMK.p)

contains the inverse image in Kv by NKp/kp of NBpikpB^, so, as L'/k

6 Cf. [5], esp. Lemma 3. I.e.
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is Galois, L' is EL-abelian over K/k. Let E* be the subset of Ik

consisting of all of such ideles SI which can be written as 2I = 931~*

with 93 in IK and s in GiK/k), and E* is contained in F*, so GiL'/K)

lies in the center of GiL'/k). Therefore, V is contained in D and we

obtain, from (7), F=F*, which we state as the following theorem.

Theorem 2. Let K/k be finite, separably Galois extension, L a finite,

separably algebraic extension of K, Galois over k and abelian over K,

and D be the maximum extension of K in L, such that D/K is central

iin the sense stated in the preface) and EL-abelian over K/k. Then, the

idele group H(D/K) is the inverse image in Ik by NKik of NK/kH(L/K).

From Theorem 1 and Theorem 2, it follows evidently a formal gen-

eralization of the isomorphism theorem in the class field theory,

which we state as the following theorem.

Theorem 3. aK/k gives canonically a homomorphism aK/k of NK/klK

onto G(D/K), having Nk^Pk- NLjklL as its kernel, where we denote by

Pk the principal idele group of K.

Applying Theorem 3 to the restriction of aK/k into NK/klK,p, we

obtain from the local class field theory the following decomposition

theorem.

Theorem 4. Let Dp = kpv*(D) with v in p(~\N and D* be the multi-

plicative group of the nonzero elements in Dp. Then, NDp/kpD* = kp

^(NK/kPK-NLlkIL).

We obtain from Theorem 2 and Theorem 3 the kernel of OK/k, as

follows.

Theorem 5. a K/k is a homomorphism of Nki^k onto a dense sub-

group of G(DK/k/K) with the Krull topology and the kernel consists of

the ideles belonging to elements of the closure of the unit element of

NKiklK/AfKikAR with the Krull topology* where we denote by AK the

subgroup of Ik consisting of the ideles belonging to elements of the con-

nected component of the unit element of the idele class group Ik/Pk.

Proof. Let L' be a subgroup of Nr^Ik, containing NK/kAK such

that [NK/klK'- L'] is finite. Evidently, the inverse image in Ik of L'

by NK/k corresponds to a class field L/K which is of finite degree and

separably Galois over k. Then, it follows from Theorem 2,L= LC\T)Kik.

Then, the kernel of o^/k is, from Theorem 3, L', and the kernel of

6 Let U be a group. We call the topology of U having as neighborhoods of the

unit element subgroups V such that [U: V] is finite the Krull topology of U, which

is not necessarily Hausdorff.
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a.K/k is the intersection of all of such L', which is the last half of the

theorem. The rest of the theorem is clear, q.e.d.

From now on, we shall study, in §3, the nonabelian part in the

extension DK/k/k, and obtain our main result which concerns total

norm residues in the principal idele group Pk of k for K/k.

3. Pkl^NK/klK- Let L be a finite separable extension of K in fi

such that L/k is Galois and L/K is abelian. Let 4, B, C, D, and

aK/k be as stated in §2. As the inverse image in IK by NK/k of H(AK/K)

is H(AK/K) itself, it follows from Theorem 1 and Theorem 3 that

<rKik(NK/kH) belongs to G(D/AK) for 21 in IK, if and only if 21 belongs
to H(AK/K), where we denote by H(AK/K) the subgroup of Ik

corresponding to AK/K. Then, we obtain evidently from Theorem 3

the following theorem.

Theorem 6'. The inverse image of G(D/AK) by aK/k is H(A/k)

r\NK/klK and it holds G(D/AK)^(H(A/k)r\NK/klK)/NmH(L/K),

where we denote by H(L/K) the subgroup of Ik corresponding to L/K.

As to G(DK/k/AkK), it holds the following theorem.

Theorem 6. ffK/k(a) belongs to G(DK/k/AkK) for a in NK/klK, if and

only if a belongs to AkC\NKiklK and ffK/k gives canonically a homomor-

phism of (Akr\NK/klK)/NK/kAK onto G(DK/k/AkK), where we denote by

Ak and Ak the subgroups of Ik and Ik consisting of the ideles belonging

to elements of the connected components of the unit elements of Ik/Pk

and Ik/Pk, respectively.

Proof. The first half of the theorem follows, as the transition

theorem in the class field theory holds for the infinite extension

Ak/K in the same manner as for the finite extension A/K, from

Theorem 1 and Theorem 5 in place of Theorem 3, in the same man-

ner as Theorem 6'. The rest of the theorem is evident, if k is algebraic

number field. Let k be algebraic function field. Ak contains, then, an

algebraic closure of the constant field of K, and the norm residue

symbol ct'k for DK/k/K gives canonically a homomorphism of a sub-

group of IK onto G(DK/k/AkK), so, ffK/k is, from Theorem 1, an onto

homomorphism, q.e.d.

As, from the supposition K/k is of finite degree, it holds, as is well

known,

(9) PkNKiJK = AkNK/kIK.

We obtain from the natural homomorphism of A* onto

(AkNK/klK)/NK,klK = (PkNK/klK)/NKlklK =* Pk/(Pk n NkiJk)
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a homomorphism of Ak onto Pk/iPkr\NKikIK) which has AkH\NK/klR

as its kernel and coincides, if restricted into Pk, with the natural

mapping of Pk onto Pk/iPkr^NK/kIK). Thus, we obtain the following

theorem.

Theorem 7. Ak/(Pk r\ NKlkIK) = iAkr\NKlkIK)/iPk C\ Nr/Jr)

XPk/(Pkr\NRiklr), where X denotes direct product.

Let Hk and H'K be the maximal compact subgroups in the con-

nected components of the unit elements of /* and Ir, respectively.

As is well known, Hi = NK/tH'K, Hi HP* = 1, and Hi E^^Nr/Jr),
so we obtain

(io) Pi n NkiJk = Hi x (Pk r\ NK/kiK),

where we denote PkHi by Pi. Thus, we obtain from Theorem 7 the

following lemma.

Lemma 1. (AknNKlkIK)/(PinNKlkIK)^Ak/Pi.

Let [K: k]=n, and we shall prove the following lemma.

Lemma 2.

(A, n NK,kIK)/(Pi r\ Nr/Jk)"

= (Pi r\NKlkiK)/(PinNK/kiR)"X ((^kr\NKlkiK)/(Pkr\NKlkiK)y.

Proof. Let aEAkr\NK/kIK. iAk(^NK,klK)/iPi r\NK/kIK) is, from

Lemma 1, divisible and uniquely divisible,7 and there exists %EAk

r\NK/klR and aEPi r\NK/klK such that a = r"«. Such a is clearly

uniquely determined by a up to factors in (Pit~\NK/klR)n, so, we

obtain a homomorphism of (Akr^NK/klK)/(Pi r\NKiklR)" onto

(Pi C\ NKlkIK)/(Pi C\ NkiJkY which has

((a, n NK,kiR)/(Pi r\ NK/kiR))"

as its kernel, coincides, if restricted into (Pi r\NR/klR)/{Pi C^NrijJk)",

with the identity, which certifies evidently the lemma, q.e.d.

As (Pir\NRikIK)"ENRikPkEPi r\NKikIK, the following corollary

follows from Lemma 2.

Corollary. (A* C\ NK,kIK)/NKlkP'K = (Pi H NK,tlK)/NK/kP'K

X ((Akr\NKlklK)/(Pi C\NkiJk)Y.

As, from Lemma 1, HAkr\NK,kIK)/(Pi r\NK/klK)Y 1S divisible and

uniquely divisible, OR/k maps ideles belonging to elements in it onto

the unit element of GiDK/k/AkK). Then, it follows from Lemma 2

' Cf. [4].
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and Theorem 6 that ffK/k maps Pk r\NK/klR onto G(DK/k/KAk) and

the kernel contains NK/kPK- As, obviously,

(Pk C\ NKiklK)/NK/kPK = ((Pk C\ Nk/Jk) X H'k)/HkNK/kPK,

it holds

(11) oK/k(Pk n Nk/Jk) = G(DK/k/AkK).

In the following, we shall prove that the kernel of ffK/k restricted

into Pk(~^NK/klK is NK/kPK. For that purpose, we prepare the follow-

ing lemma, which is a modification of Theorem 5.

Lemma 3. The kernel of ffK/k consists of ideles belonging to elements

of the closure of the unit element of NK/klK/NK/kP'K with the Krull

topology.

Proof. Let L' be a subgroup of NK/klK, containing NK/kPk such

that [NK/klK: L' ] is finite. As Ak/P'k is divisible, so is NKikAK/NKikP'K,

and L' contains NR/kAK. Then, it follows evidently from Theorem 5

the lemma, q.e.d.

Decomposing (Akr\NK/kik)/'NK/kPk as direct product, as stated

in corollary to Lemma 2, we obtain, from Lemma 3, as the latter

factor is a divisible group, that the kernel of ffK/k restricted into

Pk C\NK/klK is the subgroup consisting of the ideles belonging to

elements of the closure of the unit element of (PI C\NK/klK)INK!kP'K

with the Krull topology. Then, we obtain, in the same manner as in

the proof of (11), the following lemma.

Lemma 4. The kernel of ffK/k restricted into Pk^NK/klK is the sub-

group W consisting of the ideles belonging to elements of the closure of

the unit element of (P^Nk^Ir)/Nr^Pr with the Krull topology.

(PkC^NK/klRJ/NR/kPR has, as abelian discrete group, sufficiently

many representations, which are, as every element of

(Pk r\ NK/klR)/NK/kPK

has an order dividing n homomorphisms into a cyclic group of order n,

so, the closure of the unit element of (PkC\NR/klr)/NR/kP'r with the

Krull topology consists only of the unit element. Thus, we obtain

the following theorem, which is the main result of the present paper.

Theorem 8. cr K/k gives canonically an isomorphism of

(Pk H Nk/Jk)/NK/kPK onto G(DK/k/AkK).

The author is greatly indebted to the referees for many suggestions

for improving the paper.



252 KATSUHIKO MASUDA [April

References

1. C. Chevalley, Sur la thtorie du corps de classes dans les corps finis et corps locaux,

Journ. of Coll. of Sciences, Tokyo, II, vol. 9 (1933).

2. ■-, La theorie du corps de classes, Ann. of Math. no. 2 vol. 41 (1940).

3. A. Scholz, Totale Normenreste, die keine Normen sind, als Erzeuger nichtabelscher

Korpererweiterungen, no. 2, Crelle J. vol. 182 (1940).

4. A. Weil, Sur la thtorie du corps de classes, J. Math. Soc. Japan vol. 3 (1951).

5. G. Whaples, Non-analytic class field theory and Grunwald's theorem, Duke

Math. J. vol. 9 (1942).

Yamagata, Japan

ON SMOOTH LINEAR PARTIAL DIFFERENTIAL
EQUATIONS WITHOUT SOLUTIONS1

PHILIP HARTMAN

1. H. Lewy [4] has recently constructed a system of first order,

linear partial differential equations with coefficients of class Cx having

the property that it possesses no "solution" on any domain. By "solu-

tion" is meant a solution having uniformly Holder continuous partial

derivatives. Since the "Holder continuity" requirement on the partial

derivatives is rather artificial, there arises the question as to whether

or not there is such a system which possesses no Cl (or even no weak

L2) solution on any domain. The object of this note is to answer this

question in the affirmative. The desired system will be obtained by a

modification of Lewy's example.

Lewy's system involves two (real) unknown functions (w1, u2) and

three (real) independent variables is, x, y). On putting u=ul+iu2,

Lewy writes his example in the form

(1) Liu) = Fis, x, y),

where L is the homogeneous, linear, first order, partial differential

operator with analytic coefficients,

Received by the editors July 30, 1958.
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