AN APPLICATION OF THE GENERALIZED NORM
RESIDUE SYMBOL

KATSUHIKO MASUDA

Let % be an algebraic number field of finite degree or an algebraic
function field of dimension 1 with finite constant field and let K/k
be a finite, separably Galois extension field. We call an algebraic ex-
tension field L, not necessarily Galois nor necessarily of finite degree,
of K an everywhere locally abelian extension, denoted in the follow-
ing as EL-abelian extension, for brevity, of K over k&, if and only if
for every finite extension L’ of K in L and every valuation v of L it
holds that the completion field L, of L’ with reference to v is a com-
position field of K, and an abelian extension M, of k, in L, , where we
denote by &, and K, the closures of k and K in L, , respectively.

Let © be an algebraic closure of K, Bk the maximum separably
EL-abelian extension of K/k in Q, Cg, the maximum separably cen-
tral extension of K/k in Q (i.e. the maximum extension Cg, which is
separably normal over k, contains K, and has the Galois group of
Ck/K in the center of the Galois group of Ck/k), Ir and Ik the
groups of the idéles of k and K, 4 and 4k the maximum separably
abelian extensions of k and K in Q, respectively. Let Dgy =Bk
M Ck Then, the norm residue symbol o} in Ax/k is, if restricted
into Ng/k, extensible into a homomorphism ox; of Nguwlx into
the Galois group G(Dg;/K). We shall study in the present article
arithmetical meanings of the extensibility.

In §1, we shall define ox/ precisely, in §2, study the kernel and
obtain a principal genus theorem (Theorem 2), from which will follow
easily a certain generalized formulation of some fundamental theo-
rems in the class field theory.! Combining it with a known property?
of the quotient group of the connected component of the unit ele-
ment of the idele class group by the natural image of the maximal
compact subgroup of the connected component of the unit element
of the idéle group, we shall obtain, in §3, our main result (Theorem
8), which concerns total norm residues in the principal idéle group
of k for K/k, and which is, the author thinks, an idéle-theoretic re-
construction of a research of Scholz.?
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2 Cf. [4].

3 Cf. [3].
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1. Definition of OK/k. Let k, K, Q, B[{/k, Cx/k, Dx/k, Ik, IK, Ak, AK,
and o} be, throughout the present article, as stated above. Let M be
the set of the prime divisors of &, &,, ks and &, with p in M the com-
pletion field of & for p, the multiplicative group of the nonzero
elements of k, and an algebraic closure, not complete, of %,, respec-
tively. Let V be the set of the normalized valuations of 2, § with p
in M the set of the normalized valuations of € corresponding, if
restricted into k, to p, N a complete system of representatives of
the classification of V as the set-theoretic direct sum of § with p in
M. Clearly, there exists a canonical one-to-one correspondence ¢ of the
set § and the set [p] of the isomorphisms of @/ into 2,/k, we denote
by v* with » in V the isomorphism «(v) of @ into @,, and let K,
=kw*(K) with v in §N\N and K} the multiplicative group of the
nonzero elements in K,, 4, the maximum abelian extension of %, in
Q,, and ¢, the norm residue symbol in 4,/k,. As is well known, o,
gives canonically an isomorphism ¢, of Nk, K; into the Galois
group G(K,4,/K,) and we define for v in NN an isomorphism g,
of NKp/ka;',‘ into G(Dgk/K) such that it holds for every a in Dgy
and every a in Ng, K}

(M *(owp(0)a) = o5 (0)7¥(a) 4

As, from the supposition, G(Dgx/K) lies in the center of G(Dxi/k),
o, is independent from the choice of v in $, and we denote it, changing
the notation, by ¢;. Then, it holds clearly for every % in K3} (in Ig)

(2 ox () = op(Nrp, ),

where we denote by ¢k the norm residue symbol in Dg;/K, by P a
prime divisor of p in K, by K} the multiplicative group of the non-
zero elements in the completion field Kp of K for P. Let I} be the
restricted direct product of kj with p in M, contained in Ix, and we
define a mapping o of I \Nglk into G(Dgp/K) by

(3) o'(amapz tT ap.) = Uil(am)al—)z(am) ttt U;.(QP,)

fora,;in NK,,,./;,,,‘K:'.. Clearly, ¢ is a homomorphism and c(IENNg;Ix)
is dense in G(Dg;/K). Let a=(a,) be an idele in Nkxlx. We can
take an ideéle B = (Bp) in I such that a=Ng;B and Be=1 for every
prime divisor Q of K not corresponding to any of the restrictions into
K of the valuations in N. Then, it follows from (2) the following
formal equality

) 11 ox(®r) = 11 o3(ar)

4 Cf. [4].
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where P and p run over all prime divisors of K and of k, respectively.
As the left product has a limit in G(Dg;/K), the right one has the
same limit and we extend continuously into a homomorphism o g
of Nxplg into G(Dgi/ K), defining for a=(a,) in Ngulx oxp(a) as

(5) oxn(0) = [] o3(a,).

Evidently, it follows from (2) and (5) the following fundamental
equality, which we state as

THEOREM 1.
012(?[) = oxn(Ng ) & € Ix).

2. The kernel of gg;x. Let L be a finite separably algebraic exten-
sion of &k in Q, Galois over &k and abelian over K. Let 4, B, C, and D
be AL, Bgi\L, Cxki\L, and Dgp/ML, respectively, and I,
o2, ok be the group of the ideles of L, the homomorphism of
Nkilx into the Galois group G(D/K) obtained canonically from
ox/k and the norm residue symbol in L/K, respectively. Let H(L/K)
and F be the inverse images in Ix by ok of G(L/L) and G(L/D),
respectively,and F* be the inverseimage in Ix by Ng,of Nk H(L/K).
Then, there exists for € in F* an idéle  in H(L/K) such that Ng;€
= Nk and we obtain from Theorem 1

D D D D
(6) ok(€) = oxpn(Nen€) = ornp(Nen®) = ox(9) = 1,

where we denote by o2 the norm residue symbol in D/K. Thus,

(™ F*CF.

As F*DH(L/K) and, from the supposition, L is of finite degree over
K, there exists a subfield L’ of L, corresponding to F*. Let P for p in
M be the prime divisor of K, corresponding to the restriction into K
of v in NN, and Ik,r the subgroup of Ix consisting of the idéles
with 1 as the component everywhere except at P. We shall identify

in the following, without contradiction, Ix,r and K}, when we shall
deal with local properties at p, so it holds for %, in I, p=K

(8) Nk, e, qp = Nipdlp.

Let L,=k,v*(L) with v in §N\N, B, the maximum abelian extension
of k, in L,, Ly and B} the multiplicative groups of the nonzero ele-
ments in L, and B,, respectively. Then, Np,,B;=N_ru,L;. As
KpNH(L/K)=Ny,x,Ly}’ the intersection Fp=F*\Kp(=F*N\Ig,p)
contains the inverse image in K, by Nk, of NB,,/k,B;-':, so, as L' /k

§ Cf. [8], esp. Lemma 3. l.c.
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is Galois, L’ is EL-abelian over K/k. Let E* be the subset of Ix
consisting of all of such idéles 9 which can be written as A =3B!
with B in Ik and s in G(K/k), and E* is contained in F*, so G(L'/K)
lies in the center of G(L'/k). Therefore, L’ is contained in D and we
obtain, from (7), F=F¥*, which we state as the following theorem.

THEOREM 2. Let K /k be finite, separably Galois extension, L a finite,
separably algebraic extension of K, Galois over k and abelian over K,
and D be the maximum extension of K in L, such that D/K 1is central
(in the sense stated in the preface) and EL-abelian over K/k. Then, the
idéle group H(D/K) is the inverse image in Igx by Ng; of NxuwH(L/K).

From Theorem 1 and Theorem 2, it follows evidently a formal gen-
eralization of the isomorphism theorem in the class field theory,
which we state as the following theorem.

THEOREM 3. ok gives canonically a homomorphism oo of Nxplx
onto G(D/K), having NxuPg- Nl as its kernel, where we denote by
Prx the principal idéle group of K.

Applying Theorem 3 to the restriction of ox; into Nkmlx,p, We
obtain from the local class field theory the following decomposition
theorem.

THEOREM 4. Let D, =Fkv*(D) with v in p\N and D} be the multi-
plicative group of the mnonzero elements in D,. Then, NDp/ka;',‘=k,,
N(NgnPr - Nrplyr).

We obtain from Theorem 2 and Theorem 3 the kernel of ok, as
follows.

THEOREM 5. ok is @ homomorphism of Nrplx onto a dense sub-
group of G(Dxu/K) with the Krull topology and the kernel consists of
the idéles belonging to elements of the closure of the unit element of
Niilg/Neplx with the Krull topology,® where we denote by Ak the
subgroup of Ik consisting of the idéles belonging to elements of the con-
nected component of the unit element of the idéle class group Ix/Pk.

Proor. Let L’ be a subgroup of Ng,ulk, containing NgpAg such
that [Nkulx: L'] is finite. Evidently, the inverse image in Ix of L’
by Nk corresponds to a class field L/K which is of finite degree and
separably Galois over k. Then, it follows from Theorem 2, L = LN Dgy;.
Then, the kernel of ok is, from Theorem 3, L', and the kernel of

6 Let U be a group. We call the topology of U having as neighborhoods of the
unit element subgroups V such that [U: V] is finite the Krull topology of U, which
is not necessarily Hausdorff.
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ok 1s the intersection of all of such L', which is the last half of the
theorem. The rest of the theorem is clear, q.e.d.

From now on, we shall study, in §3, the nonabelian part in the
extension Dg/k, and obtain our main result which concerns total
norm residues in the principal idéle group Py of k for K/k.

3. Ps\Ngilx. Let L be a finite separable extension of K in Q
such that L/k is Galois and L/K is abelian. Let 4, B, C, D, and
o2 be asstated in §2. As the inverse image in Ix by Nk of H{AK/K)
is H(AK/K) itself, it follows from Theorem 1 and Theorem 3 that
o2(Ng) belongs to G(D/AK) for ¥ in Ik, if and only if % belongs
to H(AK/K), where we denote by H(AK/K) the subgroup of Ix
corresponding to AK/K. Then, we obtain evidently from Theorem 3
the following theorem.

THEOREM 6. The inverse image of G(D/AK) by o2 is H(A/k)
NNgplx and it holds G(D/AK)=2(H(A/R)N\Ngnlg)/NipH(L/K),
where we denote by H(L/K) the subgroup of Ix corresponding to L/K.

As to G(Dgp/AxK), it holds the following theorem.

THEOREM 6. oxi(a) belongs to G(Dxu/ArK) for a in Ngulg, if and
only if a belongs to Ay\\Ngulx and ox gives canonically a homomor-
phism of (Av\Ngplk)/ Nknlk onto G(Dgix/ArK), where we denote by
Ay and Ak the subgroups of I and Ik consisting of the idéles belonging
to elements of the comnected components of the unit elements of Ii/Py
and Ix/Pk, respectively.

Proor. The first hall of the theorem follows, as the transition
theorem in the class field theory holds for the infinite extension
Ai/K in the same manner as for the finite extension A/K, from
Theorem 1 and Theorem 5 in place of Theorem 3, in the same man-
ner as Theorem 6'. The rest of the theorem is evident, if % is algebraic
number field. Let k be algebraic function field. 4; contains, then, an
algebraic closure of the constant field of K, and the norm residue
symbol ok for Dk;/K gives canonically a homomorphism of a sub-
group of Ik onto G(Dx/AxK), so, ek is, from Theorem 1, an onto
homomorphism, q.e.d.

As, from the supposition K/k is of finite degree, it holds, as is well
known,

9) PiNgpnlrg = AeNgplg.
We obtain from the natural homomorphism of A onto
(ANxnlk)/Neplx = (PeNrwlg)/Neplx = Po/(Py N Niplg)
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a homomorphism of Ax onto Pr/(Pr/ Nk ;xIx) which has Aix\Ng eIk
as its kernel and coincides, if restricted into Py, with the natural
mapping of Py onto Pi/(Py Nk ;xIk). Thus, we obtain the following
theorem.

THEOREM 7. Ak/(Pk a Nx/klx) = (A,J\NK/,,IK)/(P,, N NK/kIK)
X Pr/(PvN\NgiIg), where X denotes direct product.

Let H{ and H% be the maximal compact subgroups in the con-
nected components of the unit elements of I; and Ik, respectively.
Asis well known, HY = NgHg, H{ "Py=1,and H{ C(AsN\Ngnlk),
so we obtain

(10) P! N\ Ngplg = HY X (Pr N\ Ngplx),

where we denote P Hy by Py . Thus, we obtain from Theorem 7 the
following lemma.

LEMMmA 1. (Akf\NK/kIK)/(Pk’ f\NK/,,IK) EAk/Pk' .

Let [K: k]=n, and we shall prove the following lemma.

LEMMA 2.

(AN Ngplg)/(Pé O\ NgpIg)®
= (Pk’ f\NK,kIK)/(Pk’ N NK/kIK)”X ((AanVK/kIK)/(PkmNx/kIK))”.

ProoF. Let aEANNkplkg. (AeN\Ngplr)/(PE N\ Ngplg) is, from
Lemma 1, divisible and uniquely divisible,” and there exists tEA,
NNgplx and aEPY{ N\Ngplx such that a=g"a. Such « is clearly
uniquely determined by a up to factors in (P¥ N\Ngulx)*, so, we

obtain a homomorphism of (A Ngulk)/(P{N\Ngpwlxg)* onto
(Pk, N NK/kIK)/(Pk, N NK/kIK)” which has
((Ae N\ Ngplg)/(PE M Ngplg))™
asitskernel,coincides, if restrictedinto (PY N\ Ng;lx) /{P{ NN ;Ix)",
with the identity, which certifies evidently the lemma, q.e.d.
As (P{ N"Ngplx)"C NgpPrCPY N Ngplk, the following corollary
follows from Lemma 2.

COROLLARY. (Ak N NK/kIK)/NK/kPQ{ = (Pk’ e NK/kIK)/NK/kP;{
X((AxNNkplg)/(P{ NNgplk))™.

AS, from Lemma 1, ((Akme/kIK)/(Pk’ f\NK/kIK))" is divisible and
uniquely divisible, ox/x maps idéles belonging to elements in it onto
the unit element of G(Dg//A:K). Then, it follows from Lemma 2

7Cf. [4].
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and Theorem 6 that ok maps P{ \Ng;lx onto G(Dg;/KAy) and
the kernel contains Nk Pk’. As, obviously,

(Pe N\ Nxplg)/NewPx = ((Pe O Nxplg) X Hi)/HyNgPx,
it holds
(11) Ux/k(Pk f'\ NK/kIK) = G(Dx/k/AkK).

In the following, we shall prove that the kernel of ox/ restricted
into Py NIk is NxPxk. For that purpose, we prepare the follow-
ing lemma, which is a modification of Theorem 5.

LeMMA 3. The kernel of ax consists of idéles belonging to elements
of the closure of the unit element of Ngulx/NgPk with the Krull
topology.

ProoF. Let L’ be a subgroup of Ng;[k, containing Ng Pk such
that [Ngulx: L']is finite. As Ag/Pk is divisible, so is Nk Ax/Nx Pk,
and L’ contains Ng;Ag. Then, it follows evidently from Theorem 5
the lemma, q.e.d.

Decomposing (Ay\Ngilx)/NxPk as direct product, as stated
in corollary to Lemma 2, we obtain, from Lemma 3, as the latter
factor is a divisible group, that the kernel of ox restricted into
P{N\Ng;lx is the subgroup consisting of the idéles belonging to
elements of the closure of the unit element of (PY N\Ng;lk)/ NPk
with the Krull topology. Then, we obtain, in the same manner as in
the proof of (11), the following lemma.

LEMMA 4. The kernel of ok restricted into Pu \NgulIx is the sub-
group W consisting of the idéles belonging to elements of the closure of
the unit element of (Px\Nxnlx)/NxPx with the Krull topology.

(PxN\Ngulg)/ NPk has, as abelian discrete group, sufficiently
many representations, which are, as every element of
(P N\ Neplk)/NkiPx

has an order dividing » homomorphisms into a cyclic group of order #,
so, the closure of the unit element of (Px\Ng;lx)/ Nk ;Px with the
Krull topology consists only of the unit element. Thus, we obtain
the following theorem, which is the main result of the present paper.

THEOREM 8. ok gives canonically an isomorphism of
(Pk N NK/kIK)/NK/kPK opto G(DK/k/AkK)

The author is greatly indebted to the referees for many suggestions
for improving the paper.
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YAMAGATA, JAPAN

ON SMOOTH LINEAR PARTIAL DIFFERENTIAL
EQUATIONS WITHOUT SOLUTIONS!

PHILIP HARTMAN

1. H. Lewy [4] has recently constructed a system of first order,
linear partial differential equations with coefficients of class C* having
the property that it possesses no “solution” on any domain. By “solu-
tion” is meant a solution having uniformly Hélder continuous partial
derivatives. Since the “Hélder continuity” requirement on the partial
derivatives is rather artificial, there arises the question as to whether
or not there is such a system which possesses no C! (or even no weak
L?) solution on any domain. The object of this note is to answer this
question in the affirmative. The desired system will be obtained by a
modification of Lewy’s example.

Lewy's system involves two (real) unknown functions (%!, #%) and
three (real) independent variables (s, x, ¥). On putting u =u!+41u?,
Lewy writes his example in the form

(1) L(u) = F(s, x, }’),

where L is the homogeneous, linear, first order, partial differential
operator with analytic coefficients,
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