
ENTIRE OPERATORS AND FUNCTIONAL EQUATIONS

Z. A. MELZAK

1. It is our aim to study some equations of the form

df(x, t)
(1) ^-L = K[f(x, t)],

dt

where 0 gx, t < °o , f(x, 0) is known and K(f) has a representation

(2) K(f) = Z Kn(f),
i

each Kn(f) being derived from an w-linear operator by equating the

argument functions.

Equations of type (1) occur in physics, especially in connection

with transport phenomena and kinetic theory. In this context the

summands Kn(f) in (2) possess a simple interpretation: for n'2i2 Kn(f)

is the contribution toward the time-rate of reshuffling of a distribu-

tion f(x, t), due to w-tuple collisions, w-fold coalescences or similar

processes, while Ki(f) is the contribution due to breakup or other

destructive process. For further details about this, and other back-

ground material, see [l; 2] and [3].

Our main result is a theorem asserting unique local existence of

solutions of Equation (1). These are obtained by the Picard iterative

method and bounds on various approximation errors are given or

can be developed. However, these estimates seem to be too crude for

actual computation.

2. Let / be the interval [0, oo) and let C°, L1 and L" denote respec-

tively the classes of continuous, integrable and essentially bounded

functions on I. Let 5 = C(T\Lir\LK and let || ||i and || ||w be the L1

and Lx norms. For each positive integer n let Kn be a mapping satis-

fying the following conditions:

(3) Kn:$X5X ■ ■ ■ X$ (n times) -» C°,

(4) for each x K„(fi, • • • ,/„) is a symmetric w-linear operator,

(5) \\Kn(fi,- ■•,/»)||i^C„n||/i||1)
1
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||#i(/)IU^a (11/11 i + ll/IU
(6) " "

\\Kn(fi, ■ ■ ■ ,/»)ii- sz)„n ii/iiii z ii/.ju/iwii,   »= 2.i     i
Here C„ and £>„ are non-negative constants. Although this terminol-

ogy is not quite justified, K„ will be called an operator rather than a

mapping. Define now Kn(f) =Kn(f, •••,/) and introduce the func-

tions

OO OO

F(x) = 22 Cnx",        G(x) = 22 DnX";
i i

if both are entire in x, the operator K(f) = 22i Kn(f) will be called

an entire operator. It will be noticed that the norm-functions F and

G are then absolutely monotonic over /. The following example

shows that the class of entire operators has nontrivial members. Let

ip(x, y) be a non-negative, bounded, continuous function, defined for

O^y^x, and let

/» X /» X

I   yP(%, y)dy ^ x, \[/(x, y)dy ^ E < oo,
J 0 J 0

For each w^2 let c/>„(xi, • ■ • , x„) be a non-negative, bounded, con-

tinuous function, invariant under any permutation of its arguments.

Let

f(y)Hy, x)dy - f(x)/x I     y \p(x, y) dy,
x J o

A'„(/i,   •   •   •  ,fn)
Ui x    p x—xi p x—xi— • • •— Xn-2

I •   •   •       I Pn(x  —   Xl  —    •   •   •   —   X„_l)
0   J 0 ■/ 0

■<A«(Xl,   '   •   '  , Xn-l,X  —   Xl  —   ■   ■   •   —   X„_l)cfx„_l   •   •   ■  dXl

n        /» oo y» oo

-  E   | I      Py(x)c6„(xi,  •  •  • , Xy_i, X, Xj+i,  ■  ■  •     X„)
j=i Jo J 0

dxi • • • dxj-idxj+i ■ ■ ■ dxn> ,

where we have put for brevity

Pj(u)   =   Pj(u,  Xi,   ■   ■   ■   ,  Xn)

= fl(Xl)   ■   ■   ■ fj-l(Xj-l)fj(u)fj+l(Xj+l)   ■   ■   • fn(xn).
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Under these conditions K(/) is entire if the positive constants a„

tend to infinity sufficiently fast.

3. Let/, gGSF. In this section estimates will be derived for the L'

and L°° norms of K(f)—K(g), K being an entire operator. By the

w-linearity and symmetry of Kn we have

Kn(f)   ~   Kn(g)   =Kn(f-g,f,---,f)

+  Kn(f ~  g, g,f,   •••,/)+•••  +  Kn(f -  g,  g,   ■   ■   ■  , g).

Taking U norms and making use of (5), we obtain

\\Kn(f) - Kn(g)\\i fk c„||/-g\\iZll/IMWh1-'
( ' IIj-II"      II   II"

r\\        /ll   ll/ll'-||g||i
= C„ «-/ ijj-rj-rrrr '

Summing over n and recalling the definition and properties of F(x),

we get

um - K(g)\\i g i\\Kn(f) - Kn(g)\\i g ii/-gii/(l|{!;i "H|g||l)
i ll/lli-lklli

and finally,

(9) \\K(f) - K(g)\\i g \\f-g\\iF'(max (\\f\\u \\g\\i)).

Similarly we obtain an Lx estimate. Starting again from (7), taking

L°° norms and making use of (6), we have for re^2

II Kn(f)   ~  Kn(g)\\x   g   Dn\\f ~  g\\„ £ ||/||l| | g||l" ̂  +   Dn\\f -  g\\ l
0

• {ii/iuS iWfWi-Vr1-' + yu £ (n -1 - oii/iiiyr"-1}.
\ 0 0 /

The series occurring in the above are easily summed up, and

llfll" — II II"
(10) \\Kn(f) ~ Kn(g)\U ̂  Dn\\f ~ g\\x   |!| I,    +  D,\\f - g\\i

11/111 - Iklli

in,ii Mwm ii/ii" - iigii" i
"F'-Uwii-yi  di/iii-uw

II    || n—1 11 ri ln II    \\n

ii ii r wiigiii       n/iii - iigii1 ii
+ l"""UWIi-IWIi   (II/II*-Iklli)2-]/'
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By the definition and properties of G(x) we have

~        Ynu"-1       u" - v"~\       G'(u)      G(u) - G(v)
2>J- =-—
i        Lu — v      (u — v)2J      u — v (u — v)2

G(v) - G(u) - (v - u)G'(u)

(v — u)2

and by a mean-value theorem

G(v) ~ G(u) - (v - u)G'(u)

(12) (v - u)2

= l/2G"[u + 6(v - u)] g l/2G"(max (u, »)),

where 0^9^1. Now

\\K(f)-K(g)\\„Z J2 \\Kn(f) - Kn(g)\\„
i

^ Di(\\f - gWx+Wf - g\\K) +  J2 Dn\\Kn(f) ~ Kn(g)\U
2

making use of (10), (11) and (12), we obtain finally

\\K(j) - K(g)\\x ^ ||/ - g||ooG'(max (\\f\\x, \\g\\i)) + \\f - g\\i

•{2?1+l/2G"(max(||/||i,||g||i))(||/|U + ||g||co)}.

As a special case of estimates (9) and (13) we obtain

(14)   \\K(f)\\i ^ Fdl/Ho,     ||at/)|U g a||/||i + ||/IUg'(||/||i).
The following lemma belongs logically to this section:

Lemma 1. ///GEF and K(f) is an entire operator, then K(f)£5.

It suffices to show that i£(/)£C°, the rest follows from (14). By

its definition and by hypothesis (3) K(f) is an infinite series of con-

tinuous functions Kn(f). Since |i£(/)| ^H-K^/)!!*,, it follows from (6)

that the series for K(f) converges uniformly and absolutely, there-

fore K(J)GC°.

A. Consider the integrated form of Equation (1):

(15) f(X, t)   = f(X, 0)  +    f   K[f(X, T)]dT.
Jo

Let/(x, 0) be the given initial value of/(x, t) and let/(x, 0)£5\ De-

fine now the Picard sequence of successive approximations, {/y}, by

(16) /, = f(x, 0),       fj+i =fo+  f V(/y)cZr;
J o
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here, and elsewhere, the arguments x, t or x, t will be left out unless

explicitly necessary. Let

(17) Aj = Aj(t) = \\f,\\i,       Bj = Bj(t) = \\fj\U.

It is necessary to show first that the sequence {/,-} is defined, that is,

that/j-Gff for all j.

Lemma 2. There exists h>0, such that on the interval [0, h] both Aj

and Bj are uniformly bounded.

Taking L' norms in (16) we have, by Fubini's theorem and by (14),

(18) Aj+i S Ao+  f F(Aj)dT.
J o

Let Xi>A0 and put

(19) M = F'(xi),      h = 1/M log Xi/Ao,      Xi = A0eM'K

Since F' is nondecreasing, F(x) :S Mx for x£ [0, Xi]. Therefore

Ai ^ Ao + AoM f eM'dr = A0eMl ̂  xu     0^1^ h,
J o

and by induction onj in (18),

(20) Aj ^ A0eMt, Og^/i.

Bj can be bounded similarly. We observe first that

(21) l.u.b.    I    h(x,T)dT\^   I     l.u.b. | h(x, t) \ dr;
x        \ *J o J 0 x

now, taking L°° norms in (16), we have by (14) and (21)

Bj+i ^ Bo +  f [DiAj + G'(Aj)Bj]dT.
-I 0

In view of (20) this implies that

(22) Bj+i ^ Bo + DiAo/M(eMt - 1) + G'(A0eMt) f Bjdr, 0g/^/,,
J o

and by an easy induction on j,

(23) Bj g {Bo + DiA0/M(eMt - l)]e^, 0 < t ^ h,

where ci = G'(^4o exp Mk).

This completes the proof of Lemma 2. It follows now from Lemmas

1 and 2 that {/,•} C^ for O^t^ti. From now on, until the contrary
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is mentioned, it will be assumed that the variable t, wherever it

occurs, is restricted to the interval [0, t\].

Lemma 3. The series

OO QO

X/ ll/y+i ~~ fi\\ u        2 I I/m — /j'lU
0 0

are uniformly, and of course absolutely, convergent.

We have from (16)

(24) fi+i-fi =  f  {K(fj) - K(fj.i)}dr;
J o

taking L' norms, interchanging the order of integrations and using

(9), we obtain

||/y+i - /i||, fk   f ||/y -/i_i||iF'(rnax (Aj, Aj-i))dr;
J o

therefore by (20)

||)m -/;||i fk c2 f \\fj - fj-i\\idr,       ct = F'(A0eM<>).
J 0

By induction on j we show now that

(25) ll/i+i-Zilli^^M1'//'!
where

||/i -/o|| g Ao + Ai g 2A0eMh = 2c3.

Similarly, by the estimate (13),

(26) "*(/y) ~ K{fl-^°° ~ ll/y -/i-ilU^'Cmax (Aj, Am))
+ ||/i -fj-i\\i{Di + l/2G"(max (Aj, Af-0)MU + IM-)}-

Let

(27) Bo + DiAo/M(eMt> - l)«i* = ch        Dy + c,G"(c3) = c6;

then (26) and (23) imply that

(28) \\K(fj) - K(fm)\\« fk 4fj - Sm\U + c||/y - Sm\\i-

Now, by taking L" norms in (24) and using (21) and (28), we get

||/i+i -/i||„ ^  f [ci\\Si - /y-i||- + ci||/i - Sm\\i]dr,
J 0
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which implies, in view of (25), that

ii ii (Cs/)'        C \\ ii
(29) \\fj+l -fj\U ^ C6 —- + Cl   I     ||/y - /y-lHooCfr, c6 = c2c6/c3.

J! Jo

Let

A,- = ||/y+i - /;L,        By = c«(c3/i)'//!;

then, by (23),

A0 = ||/i -/o|U = ll/o||- + ||/i||- ^ 50 + c4 = CT>

so that (29) can be written as

(30) Ay g Ej + Cil    Aj-idr,        A0 ^ c7.
*J o

By induction on j in (30) we obtain

Ay ̂  c7(city/j\ + J2 Ek(cit)*->>/(j - k)l
k~i

By the definition of Ej, and by the above estimate, we obtain finally

Ay £ c7(city/jl + ce E (c3ti)k/k\(cit)'-"/(j - k)l
,    , *-l

(31)
^ ci(cih)'/jl + d(czh + cihY/jl.

Now the lemma follows from the estimates (25) and (31).

5. Theorem 1. Let K be an entire operator and let f(x, 0) be a given

member of 3. Then Equation (1) either possesses a unique solution f(x, t)

in £F, valid for t^O, or else, it possesses a unique solution f(x, <)£SF on

an interval [0, T) and ||/(x, t)\i tends to infinity as t approaches T.

By Lemma 3 the series

00

f(x,0) + E [fi+i(x,t) -fj(x,t)],
o

majorized by the absolutely and uniformly convergent series

oo

fix, 0) + E ||//+if>, 0 -/,(*, oil-.
o

defines a continuous function/(x, t)(E.$ which satisfies Equation (14)

and consequently Equation (1), on the interval [0, ti]. Suppose that
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there are two such solutions, f(x, t) and g(x, t), both in ff and let

f(x, 0)=g(x, 0).Then

S~   g  =    f    {*(/)-*(*)}<&-,
•J 0

and by (9)

||/-g||i^c f)\f-g\\idr,

where c is a constant. But this implies that ||/—g||i = 0, and since/

and g are continuous,/=g. This establishes the unique solution/(x, t)

on [(), ti]. However,/(x, /OGff and so we may continue the solution

successively to [h, tt], [k, t3] etc. Let A(t)=\\f(x, t)\\i and suppose

that the extension process stops: tn—>r<oo. If A(t) is uniformly

bounded from above on the whole of [0, T), then it is possible to

construct an existence interval [T—e, T+ri] for some e,rj>0. With

suitable changes, this can be shown in the same way as in (19). This

leads to a contradiction and the theorem is proved.

6. Theorem 2. The solution f of Equation (1), obtained in Theorem 1,

is of the class Cx in t, for every x.

Since/ satisfies Equation (1) and K(f)^'S, f is in C1 in t. Differ-

entiating the series

df      A
J- =   Z Kn(f)
at        i

and using the symmetry and re-linearity of Kn, we obtain formally

(32) ~ = Z S nKn[Km(f),f, •••,/],
dt2 i     i

and in the same way

^ = iti:i«(«- i)Kn[KP(f), Km(f)j,...,/]
(33) dt l     l     '

+ nmKn[Km(Kp(f),f, ■ ■ • ,/)/, . • •,/]}.

In each case the right hand side may be used to define the left hand

one, and the second and third derivatives will exist if only the series

in (32) and (33) can be shown to converge uniformly and absolutely.

Since the general expression for the A^th derivative is rather in-

volved, we shall introduce a symbolic procedure to simplify the mat-

ters. Define an operation d by
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BK = K/(l - K) = E K",
i

letd2K = d(dK) be

CO CO 00        oo

d2K = E dK" = E nK^dK = 22H nK"-^*",
ii ii

in the same way

oo        co oo        oo

d3.fi: = E E ndtf"-1^) = 22 22 [ndK"-1Km + nK"-1dKm\
ii ii

oo oo

= 22}2 [»(» - l)K"~2dKKm + nmK^K^dK]
1 1

00 00 oo

= 22 22 22 [n(n - l)K"~2KvKm + nmK"~1K'"-1K^],
iii

and so on. If now Kn is interpreted as Kn(f), Kn~1Km as

Kn[Km(f), ■••-/]> K"-2K*Kt" as Kn[KP(f), Km(f), /,•••,/], and
Kn-iKm-iKp as ^{^[JCpCO,/, •••,/],/,•••,/} etc., we obtain

a compact notation for the derivatives: dNf/dtN=dNK. When written

out at length, this becomes a sum of a finite number of expressions

of the following form:

00 00

Sn =   E    ' ' '     E   ni\/(ni — i,)! ■ • • nN\/(nN — iN)\
{■J A) ni=i'l nN=iN

J£ni—h   .   .   .  J^nN—iN

where \ik] is any system of non-negative integers for which ^ = 0

and 22i ik = N — 1. When the symbolic powers of K are finally inter-

preted as the proper iterates of the Kn operators, we obtain the A7th

derivative itself. It remains to show that the ./V-tuply infinite series

in (34), each term of which stands for a continuous function, will

converge uniformly and absolutely. We have |i£(/)| =1s||A'(/)!!„, and

by the main estimates (5), (6) and (14) it is easy to show that

h**-* ... K-»-<»\u g (nc„i)ii/ir.i+-+n^(Ar-1,I

(35) ||£»»-" • • • A^-^Hoo

^(ep*^ ■■■HknN)\\f\\nr--n*-N\\f\u,

where Hkn, is either Cn, or Dn, and Pk is a polynomial in Wi, • • • , w.y

of degree N—l. These formulas show that the series in (34) is dom-
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inated by an absolutely and uniformly convergent series so that the

N-th derivative dNf/dtN exists for every N. Moreover, this derivative

is of class L1 in x on I.

7. In this last section we give without proof two theorems concern-

ing the behaviour of the solutions of Equation (1) and those of a

related equation. These theorems are generalizations of various re-

sults of [l] and [2] and proofs can be constructed without difficulty

by slight adaptations of the methods of [l] and [2].

Theorem 3. // Cn = Dn = 0 for n^3, then the solution f(x, t) of

Equation (1), obtained in Theorem 1, is analytic in t for j£ [0, Ti),

0 < Ti g T, and it vanishes identically for /£ [Ti, T).

An entire operator K(f) is called positive if K(f) ^0 for/^0. An

entire operator is called separable if it is a difference of two positive

operators: K(f) =K+(f) —K-(f). An entire operator is called con-

servative if the first moment SoxKn(f)dx exists for all n and if

fo*xK(f)dx = 0. Since

/1 00 CO f% 00xK(\f)dx = X) ^n I    xKn(f)dx X > 0
0 1       J 0

it follows that if K (/) is a conservative operator, then each summand

Kn(f) is also conservative. The example in §2 shows that there exist

nontrivial separable conservative operators. A separable operator

K(f) is called a C-operator if there are constants Ci and c2, such that

K-(f) ̂ Cif and fZK(f)dx ̂  ctffSdx for any /G$F, /^ 0.

Theorem 4. Let K(t, f) be a t-dependent conservative C-operator and

let all the conditions of boundedness, continuity, separability, etc., hold

uniformly in t. Let f(x, 0)^^ be non-negative with a finite first moment

over I. Then the equation

df(x, I)
J±J-±=K[t,f(x,t)}

at

possesses a unique non-negative solution f(x, /)£?, valid for f£i0.
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