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1. The representation of an integer n as sums of a fixed number 5

of squares has been studied extensively. In counting the number rs(n)

of these representations, i.e. the number of solutions of the diophan-

tine equation

(1) E x\ = n
i— 1

in integers x,-, solutions are considered distinct, if they differ by the

order, or by the sign of any xt. The following results are classical:

Necessary and sufficient conditions that (1) should have solutions

are:

for 5 = 1, that n should be a square;

for 5 = 2, that the highest power at which any prime p = 3 (mod 4)

divides n should be even (possibly zero);

for s = 3, that n should not belong to the set Mi of integers of the

form n = A"ni, ni = 7 (mod 8), with integral a^O;

for 5=4, (1) has solutions for every n.

In these statements as also in the papers of Lehmer [10] and

Chakrabarti [2], no distinction is made between representations in-

volving zeros and those by positive squares. The problem of char-

acterizing and counting the integers n^x, having representations by

5 positive squares has been investigated for various values of 5 by

Descartes [3, p. 256, 337-338], Dubois [5] and G. Pall [ll] (see

also [4, especially vol. 2]). The results may be summarized in the

following

Theorem A (G. Pall [ll]). Denote by B the set of integers (1, 2, 4,

5, 7, 10, 13). For 5 = 6, every integer n can be represented as a sum of s

positive squares, except 1, 2, • ■ ■ , s — 1 and s+b, with &£5. For 5 = 5

the same statement holds, with b(E{B, 28}. For 5 = 4 the statement

holds, with b(E.{B, 25, 37}, except for n = Aani with «i£{2, 6, 14}.

For s = l the situation is obvious, and for 5 = 2 it follows easily that

every n is a sum of two positive squares, if and only if n = Aanin\, with
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integral   a^Q,   «i>l   and   where   «i = TL £f>  Pi —I    (mod   4),   n2

— IIy<Z?'. ii—3 (mod 4), with pit q} primes.

2. No similar complete results seem to be known for 5 = 3. As par-

tial results one has the following two theorems:

Theorem B (Hurwitz [8]). The set Ni of integers n that are squares

but not sums of three positive squares consists precisely of re = 4a and

w = 25.4".

Theorem C (G. Pall [ll]).1 Every integer n(£Mi and containing

an odd square factor larger than one is a sum of three positive squares,

unless w=4a-25.

It is the purpose of this paper to prove the following

Theorem. There exists a finite set S of m integers, such that every

integer re is a sum of three positive squares, unless n^M^JM, with

Mi defined above and M consisting of the integers n = 4°«i, WiGS- If N

stands for the set of integers that are sums of three positive squares and

N(x) is the number of integers in N not exceeding x, then

5x      /         7\
(2) N(x) =-\m-)/log x+ a - R

with/= (log 4)"\   ■o = 7/6+/(E,6SIog»-(7/8) log 7) and 0<R

</log x/7+m + 2.

3. Proof of the theorem.2 Let TV,- (i = l, 2) stand for the set of

integers that are sums of i, but not of three positive squares and set

Nt(x) = ^„s, 1, with the summations extended over TV,-. Let also

Nit(x) = ^2„ix I with nENiC\N2 and Af4(x) = ]C»sx 1, nGMt.
Every n&Mt belongs either to N, or to NiKJN2. Nx is known by

Theorem B so that only N2 remains to be determined, in order to

complete the characterization of N.

If w = 4arei, reif^O (mod 4) and n^N2, then ni(E.N2 and conversely.

Hence, it is sufficient to determine the set TCZNt of integers n£z\N2,

rep^O (mod 4). By Theorem C, if reGP, then either re = 25, or else re

cannot contain the square of any odd prime; hence it is square free.

Consequently, if any prime g = 3 (mod 4) would divide re, q2\n, and,

hence, by a classical result r2(re)=0, so that reG^2, contradicting

1 This result follows also from [l ].

2 The authors gratefully acknowledge valuable suggestions of a referee, in par-

ticular the use of Siegel's rather than Tatuzawa's theorem in the present proof. Also

the correction of many minor and of at least one serious error are due to the excep-

tional attention of a referee.
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n^TCZN2. All intgers of T, except « = 25, are therefore of the form

n=YliPt, with pi^3 (mod 4), piT^pj for i^j and n = l, 2 or 5
(mod 8); and T contains all such integers that are sums of two, but

not of three positive integers. We show now that the set of these

integers is finite.

As « = a2-|-62-|-0 = 62-r-0-|-<z2 = 0-|-cj2-|-62 are counted as three dis-

tinct representations of n in r3(n),

(3) r3(n) = 3r2(n)

holds for any n, and n has a representation by three positive squares

if, and only if, the inequality in (3) is strict. In order to show that this

is always the case for sufficiently large square free n = 1, 2 or 5 (mod 8)

we observe that (see [l]) for any n, r3(n)= E^i" Rz(n/d2) with

Rz(n) =(Gn/ir)nl'2L(l, x). Here G„ depends only on the residue class

(mod 8) of n, and

A   (~k/v)
£(1> x) = 2-i ->  with * = 4w.

v-l v

For square free n = l, 2 or 5 (mod 8), r3(n)=R3(n) and G„ = 24, so

that r3(n)=(2A/ir)n1'2L(l, x). Also, if w£P, w = 26«, (6 = 0, 1), then

r2(n) =4t(wi) ^4r(w), where r(«) stands for the number of divisors

of n. The strict inequality in (3) is now a consequence of

24 1 2
— nll2L(l,x) > 12t(m) or r(w)-< — n1'2,
i" L(l,x)       tt

which holds for sufficiently large n because for any e>0, r(w) = 0(n')

(see [7, Theorem 315]) and l/i(l, x)=0(k')=0(n<), by Siegel's
theorem (see [12 or 6]).

This finishes the proof that there are only finitely many, say t

integers in T. The integers n of A^ are precisely those of the form

n = Aani, WiGP and, in order to obtain M, one only has to adjoin to

them the elements of Ai, not already in N2; these are the integers

n = Aa, as follows from theorem B. This finishes the proof of the first

part of the theorem, with S= [l, T] and m=t + l.

4. In order to prove (2), one observes that

(4) N(x) = [x] - Mi(x) - Ni(x) - N2(x) + Ni2(x),

the square bracket denoting the greatest integer function. Following

Landau [2, vol. 2, p. 644]

M*W = 4" - 7~T ~ - (z + 1) + Bi(z + 1)
6       24-4z       8
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with

z = [f log (x/7)] = / log (x/7) -l + Bt,

f = (log 4)-1    and    0 < 0; fk 1        (i = 1, 2).

Hence, M4(x) = x/6 + (9i-7/S)f log (x/7) -(7/6)4-*'-(7/8)0,+ 6i92.
Similarly, by Theorem B, Ni(x) -Nu(x) =/ log x+93, 0<93fkl. Fi-
nally, for given re^O (mod 4), the number of integers 4aw^x is

[/log (x/re)] + l; hence,

A2(x) = E    {[/ ^g (x/w)] + 1 }=/•/• log x - / £   log re + 04,

0 < 04 =: 1.

Replacing in (4) [x] by x — 1 +06 and M4(x), Ni(x) —-/Vi2(x) and AT2(x)

by their values, setting m = t + l and observing that in the last sum-

mation «GP, may be replaced by reG-S, one obtains (2) with

R=0iS log x/7+eA-(7/8)e2-(7/6)i-°> + d3 + (m-l)ei-8li + l3/6,
0<9ifkl (i = l, 2, • • • , 5). For x—>», R is dominated by its first

term; hence, R is maximum for 0i=03=04 = l, 05 = 0. An elementary

consideration shows that now R increases with 92; setting 0i=02=03

= 04 = 1, 06 = 0 one obtains i?=/log x/7-f-m+2. Similarly, one shows

that R = 0 is the least possible value for R, attained for 0i=03 = 04 = O,

02=05 = 1. In order to complete the proof of the theorem it is sufficient

to observe that R cannot take its extreme values, because 0,- 5^ 0.

5. By direct computation one finds that the integers 1, 2, 5, 10, 13,

25, 37, 58, 85 and 130 belong to S, and up to 2000 no further integers

of S are found. This suggests (see [lO]) the

Conjecture. S={l, 1, 5, 10, 13, 25, 37, 58, 85, 130}. From this
conjecture would follow that m = 10 and (2) could be sharpened to

read:

5 73
N(x) — — x-/log x + a — R

6 8

with /= (log 4)-1, a = 19.68 ■ ■ • and 9 <R < 12 +/ log x/7.
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