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1. Introduction. Consider a group ® = (G, +) (not necessarily com-

mutative) and T(G), the set of transformations on G. Define addition

(+) and multiplication (•) on T(G) by

(1.1) g(A + B)= gA+ gB, g(AB) = (gA)B,  g E G, A, B G T(G).

Then (T(G), + , ■) = %(&) is a near-ring, the near-ring of transforma-

tions on @. That is (i) (T(G), +) is a group, (ii) (T(G), ■) is a semi-

group, and (iii) multiplication is left distributive with respect to addi-

tion:

(1.2) A(B + C) = AB + AC,        A,B,C<ET(G).

The transformation 0, where g0 = 0, for all g£G, is the zero of

Z(&). Let To(G) be the set of all transformations which commute

with the zero transformation, i.e. 0^4 =0, A G.T(G). T0(G) determines

a sub-near-ring £0(®) of £(@).

The main theorem is now stated.

Theorem 1. For any group ©, X(&) and Xo(®) are simple.

That is, they have no proper nontrivial homomorphic images.

2. Preliminaries. A subset Q of a near-ring ty determines an ideal

of ty if and only if

(a) (Q, +) is a normal subgroup of (P, +),

(b) P<2C<2,
(c) (0+3)6 — ab is in Q for all a, b^P, gEd-
As in ring theory, the kernal Q of a homomorphism 9 from a near-

ring $ to a near-ring ty' (i.e. the inverse image of the zero of P') is

an ideal. Every ideal O is the kernal of the natural homomorphism

v:av = a + Q, from ty to the difference near-ring "ip — O, and every

homomorphic image %^6 with kernel Q is isomorphic to ty — Q. Thus

a near-ring ^ is simple if and only if its only ideals are itself and the

zero ideal.

By way of warning, the following three concepts are introduced.

A subset Q of a near-ring ^J determines (a) a left ideal if it satisfies

(a) and (b), (P) a right ideal if it satisfies (a) and (b') QPCLQ, (7) a

two-sided ideal if it satisfies (a), (b) and (b'). While an ideal is a left

ideal, examples show that ideals need not be two-sided ideals, and
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that two-sided ideals need not be ideals.

In the near-ring S£(@), denote by Zg the transformation such that

g'Zg = g, g'GG. Clearly AZg = Zg, and ZgA=ZgA, for every A in

T(G) and g in G. In particular Zq = 0 in (T(G), +).

Lemma 1. 7/ Q is an ideal of £(@), /Aere QT0(G) CQ-

From (c), letting a(EQ, b£:T0(G), (Zo+a)b — Z0b = ab^Q. In par-

ticular, if Q is are ideal of £o(@), ^ere Q is a two-sided ideal of Xo(®).

Lemma 2. The only sub-near-ring of X(@) which contains Xo(&)

properly is X(®) itself.

Let ^ be a sub-near-ring of X(&) containing !£o(®). Consider

^4GP, AQTo(G). Then A -Z0aET0(G). Hence ZoaGP. Since
OA 9^0; and Z0aB=Z0ub), and T0(G) is transitive on the nonzero

elements of G, the set of Zg's, g(EG is in P. Thus, C£.T(G), C

= (C — Zoc)+Zoc is in P, for C — Z0c is in T0(G).

3. Proof of the theorem. A transformation A G P(G) has rank

R(A)=R if the set {g;4|gGG} has cardinality i?.

Lemma 3. A nonzero ideal 3C£o(©) contains all the elements of

rank 2.

By Lemma 1, 3 is a two-sided ideal, and since ^^{o}, there

exists a FG7 and gi, g{ GG, g{ t^O such that giV = g{. Partition G

into disjoint sets Gi and Gt, 0GG2. Define A(E.T0(G) such that

gA—gi, gGCn, gA=0, gGG2. Let g" be any element of G, and let

BGT0(G) be such that g{B=g". Then g.4 75 =g", gGGi, g4 75 =0,
gGC72, and A VB EI.

Lemma 4. 7/ @ is finite, £0(®) m simple.

Suppose 7 contains all elements of rank less than or equal to k.

Partition G into pairwise disjoint nonempty sets Go, G\, ■ • ■ , Gk,

OGGo- Consider k + l elements in G, go = 0, gx, ■ ■ ■ , gk- Define ^4G7

such that gA=git gG.Git t = 0, 1, • • • , k — l; gA=0, gE.Gk. Define
BGTo(G) such that g£ = 0, gGGi, i = 0, 1, • • • , k-1, gB=gk,
gEiGk- Hence C=A+BEI and has rank k + l. Since the sets Git

i = 0, 1, • • • , k, and the elements git i=l, 2, • ■ ■ , k are arbitrary,

I=To(G) by induction.

Lemma 5. Let ® have infinite cardinality and let h£zG, h^O. Then

there exists a maximal set AQG such that Af\(A+h) = 0. Further,

AVJ(A+h)\J(A—h)=G. Hence the cardinality of A, A+h, and A—h
are each equal to the cardinality of G.
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Consider the collection of subsets of G: S= [S\ (S+h)H\S=0}.

The collection S is not empty since {0} E§. Define a partial ordering

5i>52, if Si~)S2, and Si, S2E§>- Consider a linearly ordered sub-

collection {St\tET, St&\. Then, it is asserted that S' = UteT StES

and S'>St, tET. Trivially, S'DSt, tET. Suppose s' = s" + h, s',

s"ES'. But, 5', s"ESt for some t, a contradiction. Hence by Zorn's

lemma a maximal set A exists.

Let kEG, kEA, kEA+h. (If no such element k exists, then

G = AKJ(A+h) and the sets A and A+h each have the cardinality

of G.) The elements k+h = aEA. For if not, consider A'={A, k}.

Then A' + h is disjoint from A', contrary to the maximality of A.

Therefore k = a — hEA—h. Since A, A+h, A—h have the same car-

dinality and their union is G, the lemma is proved.

Lemma 6. If I contains a transformation of rank d, then I contains

every transformation of rank less than or equal to d.

Let \GxEG\xEX} be any partition of G into pairwise disjoint

sets, where X is an index set of cardinality d, with 0EL7l0. Consider

any collection {gi EG\xEX, gzo = 0}. Let VEI have rank d and

denote the elements in the image GV of Fby {gx| xEX, g*0 = 0 }. For

each gxEGV, let gi' be an element such that gi'V=gx. Define

AETo(G) such that g^4 = gi', gEGx, xEX. Let B be any element in

T0(G) such that gxB = gi. Then AVB is an arbitrary transformation

of rank less than or equal to d and is in I.

Lemma 7. If & has infinite cardinality Xo(®) is simple.

Define the transformation DhETo(G) by gDh = h, gT^O, gEG. Then

by Lemma 3, DhEI- Define CET0(G) by gC = g, gE^4; gC = 0,
gEA, where A is a maximal set (Lemma 5) such that AC\(A +h) = 0.

Then T= (1 +Dh)C— CEI, where 1 is the identity map. Observe that

gT=(g+h)C—gC= — g, gEA. Hence T has rank of the same car-

dinality as G. Thus, by the previous lemma, /= To(G). It is only in

Lemma 7 that the invariance property of an ideal is used in proving

the simplicity of X0(&).

Lemma 8. £(©) is simple.

If G has order 2, then the theorem is easily checked directly. Assume

therefore that G has order greater than 2. If ^y is a nonzero ideal in

£(©), and if there exists a CEir\T0(G), 6V0, then Ta(G)CI by

Lemmas 1, 4, 7. In addition, since an ideal is a left ideal, ZgC = ZacEI,

gEG. Choose gEG so that gC^O. Then, since the smallest near-ring

properly containing J0(®) is £(@), the lemma follows. Finally if the

ideal contains no nonzero element of Tq(G), consider Bt^OEI and
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g£G such that gB=gn*0. Then ZgB = Zgi<EI. Let C<ET0(G) such
that giC = 0 and (g2+gi)CVg2C ior some gtEG, g29^gu gt^O. Then

D = (1 +Zgi)C- CEI. Further DET0(G) and g2D j*0, contrary to the

assumption.

The theorem follows from Lemmas 4, 7, 8.

4. Two-sided invariant sub-near-rings. A sub-near-ring Q of a

near-ring ty is two-sided invariant if conditions (b) and (b') of §2 hold.

Lemma 9. The sets (i) TZ(G) = {A<=T(G)\R(A) = 1}, (ii) Tf(G)

= {AET(G)\R(A) <Ho},(ni) THk(G) = {AET(G)\R(A) ^Xk},where
&k is an infinite cardinal number, determine two-sided invariant sub-

near-rings of J(@). Further Tnkl(G)^THki(G) provided d^^kl>^k2,

where d is the cardinality of T(G).

The proof of this lemma is straight forward and depends on very

simple properties of cardinal numbers. The theorem which follows

shows that these near-rings determine the two sided invariant sub-

near-rings of J(@) and £o(®).

Theorem 2. (i) The two-sided invariant sub-near-rings of £((&) are

Xz(&), X/(®), and In*(®) for any infinite cardinal number \&k less

than or equal to the cardinality of ©. (ii) The two-sided invariant sub-

near-rings ofXo(®>) are {o} and the intersection of the two-sided invari-

ant sub-near-rings of X(&) with J0(®).

Let f bea two-sided invariant sub-near-ring of £(®) which has

an element C of maximal infinite rank N*. Then, for suitable choices

of A, BET(G), ACB represents any transformation whose rank is

less than or equal to N*. (See proof of Lemma 6.) Thus (ip = 2:«t(®).

If P contains no element of infinite rank, suppose P contains an ele-

ment C of rank greater than 1. Then as above it follows that every

element of rank less than or equal to the rank of C is in P. The argu-

ment used in the proof of Lemma 4 is now valid to show that ty

= £/(©). If the rank of every element of P is 1, then PCTZ(G) and

it is immediate that $ = !Ej(®). The proof of (ii) is similar.
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