SIMPLICITY OF NEAR-RINGS OF TRANSFORMATIONS

GERALD BERMAN AND ROBERT J. SILVERMAN

1. Introduction. Consider a group $\mathfrak{G})=(G,+)$ (not necessarily commutative) and $T(G)$, the set of transformations on G. Define addition $(+)$ and multiplication (\cdot) on $T(G)$ by

$$
g(A+B)=g A+g B, g(A B)=(g A) B, g \in G, A, B \in T(G)
$$

Then $(T(G),+, \cdot)=\mathfrak{T}(\oiint)$ is a near-ring, the near-ring of transformations on (b). That is (i) $(T(G),+)$ is a group, (ii) $(T(G), \cdot)$ is a semigroup, and (iii) multiplication is left distributive with respect to addition:

$$
\begin{equation*}
A(B+C)=A B+A C, \quad A, B, C \in T(G) . \tag{1.2}
\end{equation*}
$$

The transformation 0 , where $g 0=0$, for all $g \in G$, is the zero of $\mathfrak{T}(\oiint)$. Let $T_{0}(G)$ be the set of all transformations which commute with the zero transformation, i.e. $0 A=0, A \in T(G) . T_{0}(G)$ determines a sub-near-ring $\mathfrak{I}_{0}(\mathbb{(})$ of $\mathfrak{I}(\mathfrak{J})$.

The main theorem is now stated.
Theorem 1. For any group $\mathfrak{(J j}, \mathfrak{T}(\circlearrowleft)$ and $\mathfrak{I}_{0}(\mathfrak{J})$ are simple.
That is, they have no proper nontrivial homomorphic images.
2. Preliminaries. A subset Q of a near-ring \mathfrak{P} determines an ideal of \mathfrak{P} if and only if
(a) $(Q,+)$ is a normal subgroup of $(P,+)$,
(b) $P Q \subset Q$,
(c) $(a+q) b-a b$ is in Q for all $a, b \in P, q \in Q$.

As in ring theory, the kernal \mathfrak{Q} of a homomorphism θ from a nearring \mathfrak{B} to a near-ring \mathfrak{B}^{\prime} (i.e. the inverse image of the zero of P^{\prime}) is an ideal. Every ideal \mathfrak{Q} is the kernal of the natural homomorphism $\nu: a \nu=a+Q$, from \mathfrak{P} to the difference near-ring $\mathfrak{B}-\mathfrak{Q}$, and every homomorphic image $\mathfrak{P \theta}$ with kernel \mathfrak{Q} is isomorphic to $\mathfrak{P}-\mathfrak{Q}$. Thus a near-ring \mathfrak{B} is simple if and only if its only ideals are itself and the zero ideal.

By way of warning, the following three concepts are introduced. A subset Q of a near-ring \mathfrak{B} determines (α) a left ideal if it satisfies (a) and (b), (β) a right ideal if it satisfies (a) and (b^{\prime}) $Q P \subset Q,(\gamma)$ a two-sided ideal if it satisfies (a), (b) and (b^{\prime}). While an ideal is a left ideal, examples show that ideals need not be two-sided ideals, and

Received by the editors April 17, 1958 and, in revised form, October 27, 1958.
that two-sided ideals need not be ideals.
In the near-ring $\mathfrak{I}(\$)$, denote by Z_{g} the transformation such that $g^{\prime} Z_{g}=g, g^{\prime} \in G$. Clearly $A Z_{g}=Z_{g}$, and $Z_{g} A=Z_{g A}$, for every A in $T(G)$ and g in G. In particular $Z_{0}=0$ in $(T(G),+)$.

Lemma 1. If \mathfrak{Q} is an ideal of $\mathfrak{I}(\mathfrak{F})$, then $Q T_{0}(G) \subset Q$.
From (c), letting $a \in Q, b \in T_{0}(G),\left(Z_{0}+a\right) b-Z_{0} b=a b \in Q$. In particular, if $\mathfrak{\Omega}$ is an ideal of $\mathfrak{I}_{0}(\mathfrak{J})$, then $\mathfrak{\Omega}$ is a two-sided ideal of $\mathfrak{I}_{0}(\circlearrowleft)$.

Lemma 2. The only sub-near-ring of $\mathfrak{I}(\circlearrowleft)$ which contains $\mathfrak{T}_{0}(\$)$ properly is $\mathfrak{I}(ङ)$ itself.

Let \mathfrak{P} be a sub-near-ring of $\mathfrak{T}(\mathfrak{J})$ containing $\mathfrak{I}_{0}(\oiint)$. Consider $A \in P, A \notin T_{0}(G)$. Then $A-Z_{0 A} \in T_{0}(G)$. Hence $Z_{0 A} \in P$. Since $0 A \neq 0$; and $Z_{0 A} B=Z_{0(A B)}$, and $T_{0}(G)$ is transitive on the nonzero elements of G, the set of Z_{g} 's, $g \in G$ is in P. Thus, $C \in T(G), C$ $=\left(C-Z_{0 C}\right)+Z_{0 C}$ is in P, for $C-Z_{0 C}$ is in $T_{0}(G)$.
3. Proof of the theorem. A transformation $A \in T(G)$ has rank $R(A)=R$ if the set $\{g A \mid g \in G\}$ has cardinality R.

Lemma 3. A nonzero ideal $\mathfrak{J} \subset \mathfrak{T}_{0}(\oiint)$ contains all the elements of rank 2.

By Lemma $1, \Im$ is a two-sided ideal, and since $\Im \neq\{0\}$, there exists a $V \in I$ and $g_{1}, g_{1}^{\prime} \in G, g_{1}^{\prime} \neq 0$ such that $g_{1} V=g_{1}^{\prime}$. Partition G into disjoint sets G_{1} and $G_{2}, 0 \in G_{2}$. Define $A \in T_{0}(G)$ such that $g A=g_{1}, g \in G_{1}, g A=0, g \in G_{2}$. Let $g^{\prime \prime}$ be any element of G, and let $B \in T_{0}(G)$ be such that $g_{1}^{\prime} B=g^{\prime \prime}$. Then $g A V B=g^{\prime \prime}, g \in G_{1}, g A V B=0$, $g \in G_{2}$, and $A V B \in I$.

Lemma 4. If (5) is finite, \mathfrak{I}_{0} ((\$) is simple.
Suppose I contains all elements of rank less than or equal to k. Partition G into pairwise disjoint nonempty sets $G_{0}, G_{1}, \cdots, G_{k}$, $0 \in G_{0}$. Consider $k+1$ elements in $G, g_{0}=0, g_{1}, \cdots, g_{k}$. Define $A \in I$ such that $g A=g_{i}, g \in G_{i}, i=0,1, \cdots, k-1 ; g A=0, g \in G_{k}$. Define $B \in T_{0}(G)$ such that $g B=0, g \in G_{i}, i=0,1, \cdots, k-1, g B=g_{k}$, $g \in G_{k}$. Hence $C=A+B \in I$ and has rank $k+1$. Since the sets G_{i}, $i=0,1, \cdots, k$, and the elements $g_{i}, i=1,2, \cdots, k$ are arbitrary, $I=T_{0}(G)$ by induction.

Lemma 5. Let (5) have infinite cardinality and let $h \in G, h \neq 0$. Then there exists a maximal set $A \subset G$ such that $A \cap(A+h)=\varnothing$. Further, $A \cup(A+h) \cup(A-h)=G$. Hence the cardinality of $A, A+h$, and $A-h$ are each equal to the cardinality of G.

Consider the collection of subsets of $G: S=\{S \mid(S+h) \cap S=\varnothing\}$. The collection S is not empty since $\{0\} \in S$. Define a partial ordering $S_{1}>S_{2}$, if $S_{1} \supset S_{2}$, and $S_{1}, S_{2} \in S$. Consider a linearly ordered subcollection $\left\{S_{t} \mid t \in T, S_{t} \in \delta\right\}$. Then, it is asserted that $S^{\prime}=\cup_{t \in T} S_{t} \in S$ and $S^{\prime}>S_{t}, t \in T$. Trivially, $S^{\prime} \supset S_{t}, t \in T$. Suppose $s^{\prime}=s^{\prime \prime}+h, s^{\prime}$, $s^{\prime \prime} \in S^{\prime}$. But, $s^{\prime}, s^{\prime \prime} \in S_{t}$ for some t, a contradiction. Hence by Zorn's lemma a maximal set A exists.

Let $k \in G, k \notin A, k \notin A+h$. (If no such element k exists, then $G=A \cup(A+h)$ and the sets A and $A+h$ each have the cardinality of G.) The elements $k+h=a \in A$. For if not, consider $A^{\prime}=\{A, k\}$. Then $A^{\prime}+h$ is disjoint from A^{\prime}, contrary to the maximality of A. Therefore $k=a-h \in A-h$. Since $A, A+h, A-h$ have the same cardinality and their union is G, the lemma is proved.

Lemma 6. If I contains a transformation of rank d, then I contains every transformation of rank less than or equal to d.

Let $\left\{G_{x} \subset G \mid x \in X\right\}$ be any partition of G into pairwise disjoint sets, where X is an index set of cardinality d, with $0 \in G_{x_{0}}$. Consider any collection $\left\{g_{x}^{\prime} \in G \mid x \in X, g_{x_{0}}^{\prime}=0\right\}$. Let $V \in I$ have rank d and denote the elements in the image $G V$ of V by $\left\{g_{x} \mid x \in X, g_{x_{0}}=0\right\}$. For each $g_{x} \in G V$, let $g_{x}^{\prime \prime}$ be an element such that $g_{x}{ }^{\prime \prime} V=g_{x}$. Define $A \in T_{0}(G)$ such that $g A=g_{x}^{\prime \prime}, g \in G_{x}, x \in X$. Let B be any element in $T_{0}(G)$ such that $g_{x} B=g_{x}^{\prime}$. Then $A V B$ is an arbitrary transformation of rank less than or equal to d and is in I.

Lemma 7. If (\$) has infinite cardinality $\mathfrak{I}_{0}(\mathbb{J})$ is simple.
Define the transformation $D_{h} \in T_{0}(G)$ by $g D_{h}=h, g \neq 0, g \in G$. Then by Lemma $3, D_{h} \in I$. Define $C \in T_{0}(G)$ by $g C=g, g \in A ; g C=0$, $g \notin A$, where A is a maximal set (Lemma 5) such that $A \cap(A+h)=\varnothing$. Then $T=\left(1+D_{h}\right) C-C \in I$, where 1 is the identity map. Observe that $g T=(g+h) C-g C=-g, g \in A$. Hence T has rank of the same cardinality as G. Thus, by the previous lemma, $I=T_{0}(G)$. It is only in Lemma 7 that the invariance property of an ideal is used in proving the simplicity of $\mathfrak{I}_{0}(\mathbb{H})$.

Lemma 8. $\mathfrak{T}(\mathbb{S})$ is simple.

If G has order 2 , then the theorem is easily checked directly. Assume therefore that G has order greater than 2 . If \mathfrak{F} is a nonzero ideal in $\mathfrak{T}(\circlearrowleft)$, and if there exists a $C \in I \cap T_{0}(G), C \neq 0$, then $T_{0}(G) \subset I$ by Lemmas $1,4,7$. In addition, since an ideal is a left ideal, $Z_{g} C=Z_{g} C \in I$, $g \in G$. Choose $g \in G$ so that $g C \neq 0$. Then, since the smallest near-ring properly containing $\mathfrak{I}_{0}(\mathfrak{J})$ is $\mathfrak{I}(\mathfrak{J})$, the lemma follows. Finally if the ideal contains no nonzero element of $T_{0}(G)$, consider $B \neq 0 \in I$ and
$g \in G$ such that $g B=g_{1} \neq 0$. Then $Z_{g} B=Z_{g_{1}} \in I$. Let $C \in T_{0}(G)$ such that $g_{1} C=0$ and $\left(g_{2}+g_{1}\right) C \neq g_{2} C$ for some $g_{2} \in G, g_{2} \neq g_{1}, g_{2} \neq 0$. Then $D=\left(1+Z_{g_{1}}\right) C-C \in I$. Further $D \in T_{0}(G)$ and $g_{2} D \neq 0$, contrary to the assumption.

The theorem follows from Lemmas 4, 7, 8.
4. Two-sided invariant sub-near-rings. A sub-near-ring \mathfrak{Q} of a near-ring \mathfrak{P} is two-sided invariant if conditions (b) and (b^{\prime}) of $\S 2$ hold.

Lemma 9. The sets (i) $T_{z}(G)=\{A \in T(G) \mid R(A)=1\}$, (ii) $T_{f}(G)$ $=\left\{A \in T(G) \mid R(A)<\boldsymbol{\aleph}_{0}\right\}$, (iii) $T_{\aleph_{k}}(G)=\left\{A \in T(G) \mid R(A) \leqq \boldsymbol{\aleph}_{k}\right\}$, where $\boldsymbol{\aleph}_{k}$ is an infinite cardinal number, determine two-sided invariant sub-near-rings of $\mathfrak{T}(\oiint)$. Further $T \aleph_{k_{1}}(G) \supsetneq T_{\kappa_{2}}(G)$ provided $d \geqq \boldsymbol{N}_{k_{1}}>\boldsymbol{N}_{k_{2}}$, where d is the cardinality of $T(G)$.

The proof of this lemma is straight forward and depends on very simple properties of cardinal numbers. The theorem which follows shows that these near-rings determine the two sided invariant sub-near-rings of $\mathfrak{I}(\mathfrak{J})$ and $\mathfrak{I}_{0}(\mathbb{J})$.

Theorem 2. (i) The two-sided invariant sub-near-rings of \mathfrak{I} (ङ) are $\mathfrak{I}_{z}(\mathfrak{J}), \mathfrak{I}_{f}(\mathfrak{J})$, and $\mathfrak{T}_{k}(\mathfrak{J})$ for any infinite cardinal number $\boldsymbol{\aleph}_{k}$ less than or equal to the cardinality of (5). (ii) The two-sided invariant sub-near-rings of $\mathfrak{T}_{0}(\oiint)$ are $\{0\}$ and the intersection of the two-sided invariant sub-near-rings of $\mathfrak{I}(\circlearrowleft)$ with $\mathfrak{I}_{0}(\circlearrowleft)$.

Let \mathfrak{P} be a two-sided invariant sub-near-ring of $\mathfrak{T}(\mathbb{H})$ which has an element C of maximal infinite rank $\boldsymbol{\aleph}_{k}$. Then, for suitable choices of $A, B \in T(G), A C B$ represents any transformation whose rank is less than or equal to $\boldsymbol{\aleph}_{k}$. (See proof of Lemma 6.) Thus $\mathfrak{B}=\mathfrak{I} \aleph_{k}(\mathfrak{(j)})$. If P contains no element of infinite rank, suppose P contains an element C of rank greater than 1 . Then as above it follows that every element of rank less than or equal to the rank of C is in P. The argument used in the proof of Lemma 4 is now valid to show that \mathfrak{B} $=\mathfrak{T}_{f}(\oiint)$. If the rank of every element of P is 1 , then $P \subset T_{z}(G)$ and it is immediate that $\mathfrak{B}=\mathfrak{I}_{z}(\mathfrak{B})$. The proof of (ii) is similar.

References

1. Gerald Berman and Robert J. Silverman, Near-rings, Amer. Math. Monthly vol. 66 (1959) pp. 23-34.
2. D. W. Blackett, Simple and semi-simple near-rings, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 772-785.
3. L. E. Dickson, On finite algebras, Nachr. Akad. Wiss. Göttingen (1905) pp. 358-393.
4. H. Zassenhaus, Über enliche Fastkörper, Abh. Math. Sem. Univ. Hamburg. vol. 11 (1936) pp. 187-220.

Illinois Institute of Technology

