SIMPLICITY OF NEAR-RINGS OF TRANSFORMATIONS
GERALD BERMAN AND ROBERT J. SILVERMAN

1. Introduction. Consider a group & =(G, +) (not necessarily com-
mutative) and T'(G), the set of transformations on G. Define addition
(4+) and multiplication (-) on T(G) by

(1.1) g(4+ B) = gd + ¢gB, g(4B) = (g4)B, g € G, 4, B& T(G).

Then (T(G), +, -)=%(®) is a near-ring, the near-ring of transforma-
tions on ®. That is (i) (T(G), +) is a group, (ii) (T(G), -) is a semi-
group, and (iii) multiplication is left distributive with respect to addi-
tion:

(1.2) A(B+ C) = AB 4+ AC, 4, B, C & T(G).

The transformation 0, where g0=0, for all g&G, is the zero of
T(®). Let To(G) be the set of all transformations which commute
with the zero transformation, i.e. 04 =0, A ET(G). T+(G) determines
a sub-near-ring To(®) of T(H).

The main theorem is now stated.
THEOREM 1. For any group ®, T(®) and T(O) are simple.
That is, they have no proper nontrivial homomorphic images.

2. Preliminaries. A subset Q of a near-ring P determines an ideal
of P if and only if

(a) (Q, +) is a normal subgroup of (P, +),

(b) PQCO,

(c) (a+q)b—abisin Q for all a, bEP, ¢EQ.

As in ring theory, the kernal Q of a homomorphism 6 from a near-
ring P to a near-ring P’ (i.e. the inverse image of the zero of P’) is
an ideal. Every ideal Q is the kernal of the natural homomorphism
viav=a+Q, from P to the difference near-ring P—LQ, and every
homomorphic image PO with kernel £ is isomorphic to —LQ. Thus
a near-ring P is simple if and only if its only ideals are itself and the
zero ideal.

By way of warning, the following three concepts are introduced.
A subset Q of a near-ring B determines (@) a left ideal if it satisfies
(a) and (b), (B) a right ideal if it satisfies (a) and (b") QPCQ, (7) a
two-sided ideal if it satisfies (a), (b) and (b’). While an ideal is a left
ideal, examples show that ideals need not be two-sided ideals, and
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that two-sided ideals need not be ideals.

In the near-ring $(®), denote by Z, the transformation such that
gZ,=g, ¢ EG. Clearly AZ;,=Z,, and Z,A=2Z,4, for every 4 in
T(G) and g in G. In particular Zy=0 in (T(G), +).

LemMA 1. If Q s an ideal of T(®), then QT (G) CQ.

From (c), letting ¢ €Q, b&To(G), (Zo+a)b—Zib=ab&Q. In par-
ticular, ¢f Q is an ideal of To(®), then Q s a two-sided ideal of To(®).

LeMMA 2. The only sub-near-ring of T(®) which contains To(®)
properly is T(®) itself.

Let B be a sub-near-ring of T(®) containing T((®). Consider
AEP, A&To(G). Then A—ZoyaETo(G). Hence ZosEP. Since
04 #0; and ZoaB=Zoup), and To(G) is transitive on the nonzero
elements of G, the set of Z,’s, g&G is in P. Thus, CET(G), C
=(C—Zoc)+Zoc is in P, for C—Zyc is in To(G).

3. Proof of the theorem. A transformation AET(G) has rank
R(A) =R if the set {gA]gEG} has cardinality R.

LeEmMA 3. A nonzero ideal FCTo(®) contains all the elements of
rank 2.

By Lemma 1, & is a two-sided ideal, and since 8‘#{0}, there
exists a V&I and g1, gf €G, g/ 20 such that g;V=g/. Partition G
into disjoint sets G: and Gi, 0EG:. Define 4 ET(G) such that
gA =g, g€EG,, gA =0, g&€G,. Let g’ be any element of G, and let
BE&ET(G) be such that gf B=g"’. Then gd VB=g", g€G:, gAVB=0,
gEG,, and AVBEIL

LemMma 4. If © s finite, To(®) is simple.

Suppose I contains all elements of rank less than or equal to k.

Partition G into pairwise disjoint nonempty sets Gy, Gy, - - -, Gi,
0&Go. Consider k41 elements in G, go=0, g1, + + -, gx. Define ACT
such that g4 =g,;, ¢€G;, 1=0, 1, - - -, k—1; g4 =0, g&Gy. Define
B&To(G) such that gB=0, g&G;, ©=0, 1,---, k—1, gB=g,,
g2EGr. Hence C=A+BEIT and has rank k+1. Since the sets G,
1=0, 1, - - -, k, and the elements g;, =1, 2, - - -, k are arbitrary,

I=T,(G) by induction.

LeMMA 5. Let ® have infinite cardinality and let h&G, h#0. Then
there exists a maximal set A CG such that AN(A+h)= . Further,
AJ(A+h)\J(A —h)=G. Hence the cardinality of A, A+h, and A—h
are each equal to the cardinality of G.
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Consider the collection of subsets of G:8= {SI (S+h)f'\S=,®’}.
The collection § is not empty since {0} €8. Define a partial ordering
S1>.S,, if $1DS,, and S;, S;€8. Consider a linearly ordered sub-
collection {S,|tET, S.€8}. Then, it is asserted that S’ =Uer S:ES
and S§'>S,, t&T. Trivially, DS, tET. Suppose s’ =s"+h, s,
s”ES'. But, s, "’ &S, for some £, a contradiction. Hence by Zorn’s
lemma a maximal set 4 exists.

Let kEG, k&EA, kA +h. (If no such element & exists, then
G=A\J(A+h) and the sets A and A +% each have the cardinality
of G.) The elements k4+k=a&A. For if not, consider 4’= {4, k}.
Then A’+h is disjoint from A’, contrary to the maximality of 4.
Therefore k=a—h&A —h. Since A, A+h, A—h have the same car-
dinality and their union is G, the lemma is proved.

LemMA 6. If I contains a transformation of rank d, then I contains
every transformation of rank less than or equal to d.

Let {G,CG|x€X} be any partition of G into pairwise disjoint
sets, where X is an index set of cardinality d, with 0EG,,. Consider
any collection {g,’ EGIxEX, g;0=0}. Let V&I have rank d and
denote the elements in the image GV of V by {g.|xEX, g.,=0}. For
each g.EGV, let g!’ be an element such that g/’ V=g, Define
AET(G) such that g4 =g/’, gEG,, x&X. Let B be any element in
To(G) such that g,B=g/. Then A VB is an arbitrary transformation
of rank less than or equal to d and is in 1.

LEMMA 7. If O has infinite cardinality To(®) is simple.

Define the transformation Dy & To(G) by gDr=h, g#£0, g&G. Then
by Lemma 3, Di&I. Define CET(G) by gC=g, g&€A; gC=0,
g A, where A is a maximal set (Lemma 5) such that AN (4 +h) = &.
Then 7= (14+D3)C— CEI, where 1 is the identity map. Observe that
gT=(g+h)C—gC=—g, gcA. Hence T has rank of the same car-
dinality as G. Thus, by the previous lemma, I=T(G). It is only in
Lemma 7 that the invariance property of an ideal is used in proving
the simplicity of To(9).

LeEmMA 8. $(O) is simple.

If G has order 2, then the theorem is easily checked directly. Assume
therefore that G has order greater than 2. If & is a nonzero ideal in
T(®), and if there exists a CEINT,(G), C#0, then To(G)CI by
Lemmas 1, 4, 7. In addition, since an ideal isa left ideal, Z,C=Z,c <1,
gEG. Choose g&G so that gC0. Then, since the smallest near-ring
properly containing To(®) is T(®), the lemma follows. Finally if the
ideal contains no nonzero element of T,(G), consider B#0&I and
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g&G such that gB=g,#0. Then Z,B=2, €1. Let C&ET(G) such
that giC=0 and (g2+g:1)C5#g:C for some g,EG, g7 g1, g270. Then
D=(1+2Z,)C—C&I Further DET((G) and g:D 0, contrary to the
assumption.

The theorem follows from Lemmas 4, 7, 8.

4. Two-sided invariant sub-near-rings. A sub-near-ring Q of a
near-ring P is two-sided invariant if conditions (b) and (b’) of §2 hold.

LEMMA 9. The sets (i) T.(G)={AET(G)|R(4A)=1}, (ii) TyG)
={AET(G)|R(4) <N}, (i) Tx,(G) = {AET(G)| R(4) N.}, where
Wi is an infinite cardinal number, determine two-sided invariant sub-
near-rings of (). Further TNkI(G);TNkZ(G) provided d =N, >Ny,
where d is the cardinality of T(G).

The proof of this lemma is straight forward and depends on very
simple properties of cardinal numbers. The theorem which follows
shows that these near-rings determine the two sided invariant sub-

near-rings of $(®) and T((©).

THEOREM 2. (1) The two-sided invariant sub-near-rings of T(®) are
T(0), TH(O), and T(®) for any infinite cardinal number Ny less
than or equal to the cardinality of ®. (ii) The two-sided invariant sub-
near-rings of To(®) are {0} and the intersection of the two-sided invari-
ant sub-near-rings of T(®) with To(®).

Let P be a two-sided invariant sub-near-ring of T(®) which has
an element C of maximal infinite rank N;. Then, for suitable choices
of 4, BET(G), ACB represents any transformation whose rank is
less than or equal to Ny. (See proof of Lemma 6.) Thus P =ITx.().
If P contains no element of infinite rank, suppose P contains an ele-
ment C of rank greater than 1. Then as above it follows that every
element of rank less than or equal to the rank of Cisin P. The argu-
ment used in the proof of Lemma 4 is now valid to show that P
=T,(®). If the rank of every element of P is 1, then PCT,(G) and
it is immediate that =T ,(®). The proof of (ii) is similar.
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