SIMPLICITY OF NEAR-RINGS OF TRANSFORMATIONS

GERALD BERMAN AND ROBERT J. SILVERMAN

1. Introduction. Consider a group $\mathfrak{G} = (G, +)$ (not necessarily commutative) and T(G), the set of transformations on G. Define addition (+) and multiplication (\cdot) on T(G) by

(1.1)
$$g(A + B) = gA + gB, g(AB) = (gA)B, g \in G, A, B \in T(G).$$

Then $(T(G), +, \cdot) = \mathfrak{T}(\mathfrak{G})$ is a near-ring, the near-ring of transformations on \mathfrak{G} . That is (i) (T(G), +) is a group, (ii) $(T(G), \cdot)$ is a semigroup, and (iii) multiplication is left distributive with respect to addition:

$$(1.2) A(B+C) = AB + AC, A, B, C \in T(G).$$

The transformation 0, where g0=0, for all $g\in G$, is the zero of $\mathfrak{T}(\mathfrak{G})$. Let $T_0(G)$ be the set of all transformations which commute with the zero transformation, i.e. 0A = 0, $A \in T(G)$. $T_0(G)$ determines a sub-near-ring $\mathfrak{T}_0(\mathfrak{G})$ of $\mathfrak{T}(\mathfrak{G})$.

The main theorem is now stated.

THEOREM 1. For any group \mathfrak{G} , $\mathfrak{T}(\mathfrak{G})$ and $\mathfrak{T}_0(\mathfrak{G})$ are simple.

That is, they have no proper nontrivial homomorphic images.

2. **Preliminaries.** A subset Q of a near-ring \mathfrak{P} determines an *ideal* of \mathfrak{P} if and only if

(a) (Q, +) is a normal subgroup of (P, +),

(b) *PQ*⊂*Q*,

(c) (a+q)b-ab is in Q for all $a, b \in P, q \in Q$.

As in ring theory, the kernal \mathfrak{Q} of a homomorphism θ from a nearring \mathfrak{P} to a near-ring \mathfrak{P}' (i.e. the inverse image of the zero of P') is an ideal. Every ideal \mathfrak{Q} is the kernal of the natural homomorphism $\nu: a\nu = a + Q$, from \mathfrak{P} to the difference near-ring $\mathfrak{P} - \mathfrak{Q}$, and every homomorphic image $\mathfrak{P}\theta$ with kernel \mathfrak{Q} is isomorphic to $\mathfrak{P} - \mathfrak{Q}$. Thus a near-ring \mathfrak{P} is simple if and only if its only ideals are itself and the zero ideal.

By way of warning, the following three concepts are introduced. A subset Q of a near-ring \mathfrak{P} determines (α) a *left ideal* if it satisfies (a) and (b), (β) a *right ideal* if it satisfies (a) and (b') $QP \subset Q$, (γ) a *two-sided ideal* if it satisfies (a), (b) and (b'). While an ideal is a left ideal, examples show that ideals need not be two-sided ideals, and

Received by the editors April 17, 1958 and, in revised form, October 27, 1958.

that two-sided ideals need not be ideals.

In the near-ring $\mathfrak{T}(\mathfrak{G})$, denote by Z_g the transformation such that $g'Z_g = g$, $g' \in G$. Clearly $AZ_g = Z_g$, and $Z_gA = Z_{gA}$, for every A in T(G) and g in G. In particular $Z_0 = 0$ in (T(G), +).

LEMMA 1. If \mathfrak{Q} is an ideal of $\mathfrak{T}(\mathfrak{G})$, then $QT_0(G) \subset Q$.

From (c), letting $a \in Q$, $b \in T_0(G)$, $(Z_0+a)b-Z_0b=ab \in Q$. In particular, if Ω is an ideal of $\mathfrak{T}_0(\mathfrak{G})$, then Ω is a two-sided ideal of $\mathfrak{T}_0(\mathfrak{G})$.

LEMMA 2. The only sub-near-ring of $T(\mathfrak{G})$ which contains $T_0(\mathfrak{G})$ properly is $T(\mathfrak{G})$ itself.

Let \mathfrak{P} be a sub-near-ring of $\mathfrak{T}(\mathfrak{G})$ containing $\mathfrak{T}_0(\mathfrak{G})$. Consider $A \in P$, $A \notin T_0(G)$. Then $A - Z_{0A} \in T_0(G)$. Hence $Z_{0A} \in P$. Since $0A \neq 0$; and $Z_{0A}B = Z_{0(AB)}$, and $T_0(G)$ is transitive on the nonzero elements of G, the set of Z_g 's, $g \in G$ is in P. Thus, $C \in T(G)$, $C = (C - Z_{0C}) + Z_{0C}$ is in P, for $C - Z_{0C}$ is in $T_0(G)$.

3. Proof of the theorem. A transformation $A \in T(G)$ has rank R(A) = R if the set $\{gA \mid g \in G\}$ has cardinality R.

LEMMA 3. A nonzero ideal $\Im \subset \mathfrak{T}_0(\mathfrak{G})$ contains all the elements of rank 2.

By Lemma 1, \Im is a two-sided ideal, and since $\Im \neq \{0\}$, there exists a $V \in I$ and $g_1, g_1' \in G, g_1' \neq 0$ such that $g_1 V = g_1'$. Partition G into disjoint sets G_1 and G_2 , $0 \in G_2$. Define $A \in T_0(G)$ such that $gA = g_1, g \in G_1, gA = 0, g \in G_2$. Let g'' be any element of G, and let $B \in T_0(G)$ be such that $g_1'B = g''$. Then $gA VB = g'', g \in G_1, gA VB = 0, g \in G_2$, and $A VB \in I$.

LEMMA 4. If \mathfrak{G} is finite, $\mathfrak{T}_0(\mathfrak{G})$ is simple.

Suppose I contains all elements of rank less than or equal to k. Partition G into pairwise disjoint nonempty sets G_0, G_1, \dots, G_k , $0 \in G_0$. Consider k+1 elements in $G, g_0=0, g_1, \dots, g_k$. Define $A \in I$ such that $gA = g_i, g \in G_i, i=0, 1, \dots, k-1; gA = 0, g \in G_k$. Define $B \in T_0(G)$ such that $gB = 0, g \in G_i, i=0, 1, \dots, k-1, gB = g_k$, $g \in G_k$. Hence $C = A + B \in I$ and has rank k+1. Since the sets G_i , $i=0, 1, \dots, k$, and the elements $g_i, i=1, 2, \dots, k$ are arbitrary, $I = T_0(G)$ by induction.

LEMMA 5. Let G have infinite cardinality and let $h \in G$, $h \neq 0$. Then there exists a maximal set $A \subset G$ such that $A \cap (A+h) = \emptyset$. Further, $A \cup (A+h) \cup (A-h) = G$. Hence the cardinality of A, A+h, and A-hare each equal to the cardinality of G. Consider the collection of subsets of $G: S = \{S | (S+h) \cap S = \emptyset\}$. The collection S is not empty since $\{0\} \in S$. Define a partial ordering $S_1 > S_2$, if $S_1 \supset S_2$, and $S_1, S_2 \in S$. Consider a linearly ordered subcollection $\{S_t | t \in T, S_t \in S\}$. Then, it is asserted that $S' = \bigcup_{t \in T} S_t \in S$ and $S' > S_t$, $t \in T$. Trivially, $S' \supset S_t$, $t \in T$. Suppose s' = s'' + h, s', $s'' \in S'$. But, $s', s'' \in S_t$ for some t, a contradiction. Hence by Zorn's lemma a maximal set A exists.

Let $k \in G$, $k \notin A$, $k \notin A + h$. (If no such element k exists, then $G = A \cup (A+h)$ and the sets A and A+h each have the cardinality of G.) The elements $k+h=a \in A$. For if not, consider $A' = \{A, k\}$. Then A'+h is disjoint from A', contrary to the maximality of A. Therefore $k=a-h\in A-h$. Since A, A+h, A-h have the same cardinality and their union is G, the lemma is proved.

LEMMA 6. If I contains a transformation of rank d, then I contains every transformation of rank less than or equal to d.

Let $\{G_x \subset G | x \in X\}$ be any partition of G into pairwise disjoint sets, where X is an index set of cardinality d, with $0 \in G_{x_0}$. Consider any collection $\{g'_x \in G | x \in X, g'_{x_0} = 0\}$. Let $V \in I$ have rank d and denote the elements in the image GV of V by $\{g_x | x \in X, g_{x_0} = 0\}$. For each $g_x \in GV$, let g''_x be an element such that $g''_x V = g_x$. Define $A \in T_0(G)$ such that $gA = g''_x$, $g \in G_x$, $x \in X$. Let B be any element in $T_0(G)$ such that $g_x B = g'_x$. Then AVB is an arbitrary transformation of rank less than or equal to d and is in I.

LEMMA 7. If \mathfrak{G} has infinite cardinality $\mathfrak{T}_0(\mathfrak{G})$ is simple.

Define the transformation $D_h \in T_0(G)$ by $gD_h = h$, $g \neq 0$, $g \in G$. Then by Lemma 3, $D_h \in I$. Define $C \in T_0(G)$ by gC = g, $g \in A$; gC = 0, $g \notin A$, where A is a maximal set (Lemma 5) such that $A \cap (A+h) = \emptyset$. Then $T = (1+D_h)C - C \in I$, where 1 is the identity map. Observe that gT = (g+h)C - gC = -g, $g \in A$. Hence T has rank of the same cardinality as G. Thus, by the previous lemma, $I = T_0(G)$. It is only in Lemma 7 that the invariance property of an ideal is used in proving the simplicity of $\mathfrak{T}_0(\mathfrak{G})$.

LEMMA 8. $\mathfrak{T}(\mathfrak{G})$ is simple.

If G has order 2, then the theorem is easily checked directly. Assume therefore that G has order greater than 2. If \mathfrak{F} is a nonzero ideal in $\mathfrak{T}(\mathfrak{G})$, and if there exists a $C \in I \cap T_0(G)$, $C \neq 0$, then $T_0(G) \subset I$ by Lemmas 1, 4, 7. In addition, since an ideal is a left ideal, $Z_g C = Z_{gC} \in I$, $g \in G$. Choose $g \in G$ so that $gC \neq 0$. Then, since the smallest near-ring properly containing $\mathfrak{T}_0(\mathfrak{G})$ is $\mathfrak{T}(\mathfrak{G})$, the lemma follows. Finally if the ideal contains no nonzero element of $T_0(G)$, consider $B \neq 0 \in I$ and $g \in G$ such that $gB = g_1 \neq 0$. Then $Z_gB = Z_{g_1} \in I$. Let $C \in T_0(G)$ such that $g_1C = 0$ and $(g_2+g_1)C \neq g_2C$ for some $g_2 \in G$, $g_2 \neq g_1$, $g_2 \neq 0$. Then $D = (1+Z_{g_1})C - C \in I$. Further $D \in T_0(G)$ and $g_2D \neq 0$, contrary to the assumption.

The theorem follows from Lemmas 4, 7, 8.

4. Two-sided invariant sub-near-rings. A sub-near-ring \mathfrak{Q} of a near-ring \mathfrak{P} is *two-sided invariant* if conditions (b) and (b') of §2 hold.

LEMMA 9. The sets (i) $T_{\mathbf{z}}(G) = \{A \in T(G) | R(A) = 1\}$, (ii) $T_f(G) = \{A \in T(G) | R(A) < \aleph_0\}$, (iii) $T_{\aleph_k}(G) = \{A \in T(G) | R(A) \leq \aleph_k\}$, where \aleph_k is an infinite cardinal number, determine two-sided invariant subnear-rings of $\mathfrak{T}(\mathfrak{G})$. Further $T_{\aleph_1}(G) \supseteq T_{\aleph_2}(G)$ provided $d \geq \aleph_{k_1} > \aleph_{k_2}$, where d is the cardinality of T(G).

The proof of this lemma is straight forward and depends on very simple properties of cardinal numbers. The theorem which follows shows that these near-rings determine the two sided invariant sub-near-rings of $\mathfrak{T}(\mathfrak{G})$ and $\mathfrak{T}_0(\mathfrak{G})$.

THEOREM 2. (i) The two-sided invariant sub-near-rings of $\mathfrak{T}(\mathfrak{G})$ are $\mathfrak{T}_{\mathfrak{c}}(\mathfrak{G}), \mathfrak{T}_{\mathfrak{f}}(\mathfrak{G}), and \mathfrak{T}_{\mathfrak{K}_k}(\mathfrak{G})$ for any infinite cardinal number \mathfrak{K}_k less than or equal to the cardinality of \mathfrak{G} . (ii) The two-sided invariant sub-near-rings of $\mathfrak{T}_0(\mathfrak{G})$ are $\{0\}$ and the intersection of the two-sided invariant sub-near-rings of $\mathfrak{T}(\mathfrak{G})$ with $\mathfrak{T}_0(\mathfrak{G})$.

Let \mathfrak{P} be a two-sided invariant sub-near-ring of $\mathfrak{T}(\mathfrak{G})$ which has an element C of maximal infinite rank \aleph_k . Then, for suitable choices of $A, B \in T(G), ACB$ represents any transformation whose rank is less than or equal to \aleph_k . (See proof of Lemma 6.) Thus $\mathfrak{P} = \mathfrak{T}_{\aleph_k}(\mathfrak{G})$. If P contains no element of infinite rank, suppose P contains an element C of rank greater than 1. Then as above it follows that every element of rank less than or equal to the rank of C is in P. The argument used in the proof of Lemma 4 is now valid to show that $\mathfrak{P} = \mathfrak{T}_f(\mathfrak{G})$. If the rank of every element of P is 1, then $P \subset T_z(G)$ and it is immediate that $\mathfrak{P} = \mathfrak{T}_z(\mathfrak{G})$. The proof of (ii) is similar.

References

1. Gerald Berman and Robert J. Silverman, Near-rings, Amer. Math. Monthly vol. 66 (1959) pp. 23-34.

2. D. W. Blackett, Simple and semi-simple near-rings, Proc. Amer. Math. Soc. vol. 4 (1953) pp. 772-785.

3. L. E. Dickson, On finite algebras, Nachr. Akad. Wiss. Göttingen (1905) pp. 358-393.

4. H. Zassenhaus, Über enliche Fastkörper, Abh. Math. Sem. Univ. Hamburg. vol. 11 (1936) pp. 187-220.

Illinois Institute of Technology