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The endeavor to find all homogeneous plane continua continues.

The simple closed curve and the point are obvious examples. The

discovery of the pseudo-arc [l; 6] should have exploded (but did not)

the conjectures that there are no others. A history of the problem

with a discussion of various false starts is given in [4]. Finding the

circle of pseudo-arcs [4] raised the number of known examples to

four. Are there others as yet undiscovered? Jones showed [5] that

each one which does not separate the plane is indecomposable. The

theorem in this paper narrows the field for search still further.

We recall the following definitions:

A set X is homogeneous if for each pair of points p, q of X there is a

homeomorphism of X onto itself that takes p onto q.

A continuum is nondegenerate if it contains more than one point.

An e-chain is a finite ordered collection di, dt, ■ • ■ , dn of open sets,

each of diameter less than e, such that di intersects dj if and only if

i and j are adjacent integers.

A snakelike or chainable continuum is a compact metric continuum

M such that for each positive number e, M can be covered by an

e-chain.

A point p is an end point of a snakelike continuum M if for each

positive number e there is an e-chain covering M such that the first

link of the chain contains p.

A continuum is indecomposable ii it is not the sum of two proper

subcontinua. It is hereditarily indecomposable ii each subcontinuum

of it is indecomposable.

A pseudo-arc is a nondegenerate, hereditarily indecomposable,

chainable continuum. Any two such continua are homeomorphic [2].

Theorem. Each homogeneous, nondegenerate, chainable continuum

is a pseudo-arc.

Proof. First we show that M has an end point p. For each integer

n, let qn be a point of M such that a 1/n-chain covers M and an end

link of this chain contains qn. Some subsequence of q\, q2, • • • con-

verges to a point q. Then the point q of M has the following property:
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Property of q. For each neighborhood N of q and each positive

number e there is an e-chain covering M one of whose end links inter-

sects M and lies in A. It follows from the homogeneity of M and the

fact that each homeomorphism of M onto itself is uniformly con-

tinuous that each point of M has the Property of q.

Let di be an end link of a 1-chain covering M such that di contains

a point pi of M. Since pi has the Property of q, there is an end link

d2 of a 1/2-chain covering M such that di contains d2 and d2 contains

a point p2 of M. Also, there is an end link d3 of a 1/3-chain covering

M such that d2 contains d3 and d3 contains a point p3 of M. Similarly,

we obtain dit d$, ■ ■ • . Then the point p which is the intersection of

di, d2, ■ • •  is an end point of M.

Finally we show that M is hereditarily indecomposable. Assume

M contains a continuum H which is the sum of two proper subcon-

tinua H', H". Let p be a point of H'-H". Then it follows from the

homogeneity of M that p is an end point of M. However, as noted in

[3], this would imply that one of H', H" contains the other and this

is impossible since each is a proper subcontinuum of their sum.
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