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DEGENERATE SUBCONTINUA ARE HOMEOMORPHIC:

AN APPLICATION OF INVERSE LIMITS

R. D. ANDERSON AND GUSTAVE CHOQUET1

1. Introduction. The primary purpose of this paper is to show that

in the plane there exists a continuum no two of whose nondegenerate

subcontinua2 are homeomorphic. We shall give a rather detailed con-

structive proof of the existence of such a continuum M which does

not separate the plane. We shall suggest modifications of this con-

struction to yield (a) such a continuum M' every nondegenerate sub-

continuum of which does separate the plane and (b) a one-dimen-

sional continuum no two of whose nondegenerate subcontinua are

homeomorphic and which contains no nondegenerate subcontinuum

embeddable in the plane. The continuum M to be described has two

additional properties: (1) M does not contain uncountably many

disjoint nondegenerate continua and (2) each nondegenerate sub-

continuum of M admits an atomic mapping3 onto a continuum which

is the sum of finitely many intervals emanating from the origin. From

either (1) or (2) it follows that M is hereditarily decomposable.

We shall describe M as the inverse limit set4 of a sequence { Mi} oi

plane continua. The construction of M will be such that it will follow

from our Theorem I that M is embeddable in the plane and from the

unicoherence of M that M does not separate the plane.

The procedure for obtaining M is suggested by the usual construc-

tion of an irreducible mapping"^ of a plane continuum K onto the unit

interval in the x-direction such that ip is a projection mapping with

the collection of nondegenerate inverses dense in K. Thus every in-

verse under \j/ is either a point or an interval. The set K can be ob-
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tained by considering the closure of the graph of y = sin 7r/x and a

damped localization of the same phenomenon. The procedure used

in this paper is also quite similar to that employed by Whyburn [l]

in his example of a plane continuum every nondegenerate subcon-

tinuum of which separates the plane.

2. Inverse limits. If A is a point set and p is a point, by piX, p)

will be meant the Hausdorff distance from A to p, i.e. the l.u.b. of

the distances from p to the points of X.

If A and Y are points or point sets, by d(X, Y) will be meant the

distance between X and Y.

If A is a point set, D(X) will mean the diameter of X.

Let {Mi} be a sequence of compact metric point sets and, for each

i, let fi be a mapping of Mi+i onto Mt. Let M be the set of all se-

quences {pi} where, for each i, piEMi and/i(£;+i) = pn Let D be the

collection of all subsets of M such that d is an element of D if and

only if for some i and some open set di in Mi, d is the set of all points

of M whose ith coordinate is in dn With D as a subbasis, it follows

that M is a compact metric space. M is called the inverse limit (set)6

of the sequence {Mi} with respect to the sequence {/,}.

It is not true that if, for each i, Mi is embeddable in a space S then

M is embeddable in S. For instance, a solenoid is the inverse limit

of a sequence of circles and is not embeddable in the plane. A criterion

for the embeddability of M in S is given here. Such a criterion, while

lengthy to state and easy to verify, can be readily applied to certain

complicated constructions of continua, particularly in Euclidean

space, and thus may be of value in simplifying the descriptions of

some other examples than the present one.

Let/,-/ denote the mapping fnfi+i ■ • • fj-i of Mj onto Mi and let

fu be the identity mapping of Mn For each i, let /,- be the mapping

of M onto Mi induced by fn fi+\, • • • .

Theorem I. Let the compact sets Mi be subsets of a given compact

metric space S. We suppose that (1) for every i and every 5>0 there

exists a 5'>0 such that if j>i; p, qEMj and d(fn(p), fn(q))>5 then
dip, q) >S' and (2) for every e>0 there exists a number k such that if

pEMk, then D(\Ji>kfklxip)) <e. Then the inverse limit set M is homeo-

morphic to the subset A of S defined by A= fl, {\ikii Aft)*6, in this case

the sequential limiting set of the sequence \ Mi}.

6 The definition is usually given for/i a mapping of Af»+i into Mi but in such a case

the Mi's can be cut down so as to admit mappings onto. It is usually not required that

the Mi be metric and that the indices, i, form a sequence; we require such because

of the applications we have in view.

• * indicates closure.
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Proof of Theorem I. From condition (2) it follows that each point

P~ {pt} of Mis such that the sequence of points pi in S has a sequen-

tial limiting point p' in S. Define <p(p) =p' and <p is a transformation

of M into 5. If q= {qf} is a point of M, then from condition (1) it

follows that d)(q)^d}(p) unless, for each i, qt = pi- Hence <f> is one-to-

one. But again from (2) and the metricity of S, ii U is an open set in

S containing <p(p) =p', then U contains an open set F containing p'

such that for some integer e, every point q' of F for which 0_1(g') =q

= {qt} EM is such that for i>e, qiE U. Hence <p is continuous, and

since M is compact, is a homeomorphism. But from metricity and

(2) it follows that 4>(M) is dense in the sequential limiting set of

{Mi} and Theorem I follows.

Remarks. (1) Given a compact subset A of a compact metric

space S where A is homeomorphic to the inverse limit of a sequence

of compact sets embeddable in S, it is not true, in general, that A

can be obtained as the sequential limiting set of sets satisfying the

conditions of Theorem I. (Take 5 as the sum of a circle and a sole-

noid). If, however, 5 is a manifold, the answer might be affirmative.

(2) Let M be the inverse limit set of a sequence {Mi} of compact

metric sets with respect to {ft}. Then M is homeomorphic to that

subset A oi S= XT* Mi consisting of the points x= {x,} where for

each i, Xi=/,(x,+i). Let a= {at} be some fixed point of A; and for

every i, let A ,• be the set of all points x = } x*} where Xk = ak for k > i

and Xk=fki+i(Xi+i) for kfki (xiEMi). There exists a canonical homeo-

morphism between A ,■ and Mi and hence mappings // of A ,+i onto

Ai. It can be verified easily that those subsets A( of S converge to A

in the sense of Theorem I. Thus any inverse limit set can be obtained

by the procedure of Theorem I.

We note that it is immediate from the definition of atomic mapping

that the product of any finite number of atomic mappings is atomic.

Theorem II. If, for each i, /,■ is atomic, then, for each i, ft is atomic.

Proof. Let AT be a continuum of M such that fi(K) is nondegener-

ate. For every j^i, the atomicity oifa implies that fj(K) =f7j1fijfj(K)

or UK) =fZxh(K) or again Jj(K) ̂ JAJt'HK)]. If we set B =/r1/.(X)
the last relation becomes fj(K) =fj(B). As this relation is valid for

every j>i we have K = B which proves the atomicity of fi as was to

be shown.

3. Lemmas and the main theorem. It will be assumed that all con-

structions of this section are in the plane.

An n-od, n>2, is a continuum homeomorphic to the sum of n dis-

tinct intervals of unit length emanating from the origin.
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Lemma 1. Let e be any positive number. Let Ki, • • • , Kjbe continua

with Ki an arc. For each i, lSi<j—l, let g{ be an A*-map of Ki+i onto

Kn Let, furthermore, each nondegenerate gTl(x) for xEKn 1 SiSj—1,

be an n-odfor some n. Let, for ISiSj — l, Ri denote the set of all points

r of Kifor which gtl(r) is nondegenerate.

Then there exist a continuum A/+i and an A*-map gi of Kj+i onto

Ki such that

(1) gjl(x), for xEKi, is a point or an n-od,

(2) for x and x' different points of Ki for which gTl(x) and gf1(x')

are nondegenerate, g]~l(x) and gjl(x') are not homeomorphic to each

other nor is either homeomorphic to any set gT1(x") for x"EKt, 1 Si

(3) for xEKi, p(grKx), x) <e, and
(4) D(t) <€ for each arc t of A/+i for which d(gt ■ ■ ■ gj(t), A\) >e,

where i is the least integer for which gi ■ ■ ■ gj(t) is nondegenerate.

Proof. Let E be the set of those points of A, which are emanation

points of M-ods in Ay. Let B be the set of points of Ay which are not

interior points of arcs in Kj. Each of E and B is finite. Let n' be an

upper bound on the orders of the points of Ki, • • • , Ay as emanation

points of w-ods in Ai, • • • , Ay. Let C be a finite set of points pi, • • • ,

pT of Kj-(B+E) such that D(t)<e/3 for each arc t of Kj-C for

which d(gi ■ - ■ gj-i(t), R/)>e where i is the least integer for which

gi • ■ • gj-i(t) is nondegenerate.

It is clear from the hypothesis that such a set C exists. Let

«i, • • • , Mr be r distinct integers >w'. For each i, ISiSr, let U(pt)

be an open circular region about pi as a center and having a radius

less than each of e/6, d(C, D+E), and 1/2 the least distance between

distinct points of C.

Where S denotes the plane, we define Kj+i-(S — IL Uip,)) to be

Ay (5 —U,- Uipi)) and gy over such set to be the identity.

Let s be the maximal open arc in U(p/) ■ Ki which contains pn Let

s' be a subset of Uipi) such that (1) s' — s' = s — s and (2) s' admits an

.<4*-map \p onto 5 such that ^~l(pi) is an w,-od Zi and each other in-

verse is degenerate. It is clear by straightforward construction that

such a set s' exists. Intuitively, we may think of an w,-od in U(pt)

and from the endpoints of 5 "wrap" open ended arcs about Z, to

obtain s'.

Let 77, be a mapping of U(p,) onto itself such that (1) 77,- is the iden-

tity on V(pi)-U(pi), (2) ■ni(Zi)=pn (3) 77,(5') =s, and (4) jj< is a

homeomorphism from Uipi)—Zi onto Vip/)—pi- That such an 77,-

exists follows from the obvious existence of a mapping satisfying con-

ditions (1), (2), and (4) and the procedure of following such a map-
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ping with an appropriate homeomorphism of U(pi) onto itself.

For each i, l^ifkr, we define A'y+i in U(pi) to be ^(Kj- U(pi))

and define gj to be rj; over Kj+i- U(pi). Thus Kj+i and gj are defined

and by definition satisfy the conditions of the lemma.

Lemma 2. There exist sequences {Mi} and {fi} such that

(1) Mi is an arc;

(2) for each i, Mt is a continuum in the unit circle in the plane;

(3) for each i, fi is an A*-map of Mi+i onto M(;

(4) for any i and any j with pEMiy qEMj and p9^q, each offf1(p)

and fj1(q) is a point or an n-od and the two are homeomorphic only if

each is a point;

(5) for no i, does there exist an arc t in Mi for which f^tt) is an arc

for each j;

(6) for any e > 0 there exists a number k such that if p is any point

of Mk then, for j>k, D(\Jf^1(p)) <e; and

(7) for each i and any S>0 there exists a 5'>0 such that if j>i, p, q

EMj and d(Uj(p), fi.j(q)) > 8 then d(p, q) >5'.

Proof of Lemma 2. Lemma 2 is an almost immediate consequence

of Lemma 1. We look at the inductive step, given Mi and/,_i, and

investigate to find an appropriate value for e. Conditions (1) to (4)

are either trivial to satisy or follow directly from Lemma 1 except

that the boundedness condition of (2) can be considered to be im-

plied by what follows. Let e<l/2* and condition (3) of Lemma 1

implies our condition (6). Let v>0 be a lower bound of the set of dis-

tances between points p and q of Mt where, for some r<i,

d(fri(p),fn(q)) > 1IV.

That such a v exists follows from the compactness of Mj, j<i, and

the finiteness of the number of mappings concerned. Let e<v/2i+1;

then condition (3) of Lemma 1 implies our condition (7). An e

satisfying these two conditions is such that our condition (5) is

also satisfied. This follows principally from condition (4) of Lemma 1

and condition (7) as already established. If there were a sequence

of arcs violating condition (5), then by (7) the sequence could not be

a null sequence and by (4) of Lemma 1 it could not fail to be a null

sequence.

Thus Lemma 2 is established.

Theorem III. There exists a plane continuum M such that (1) no

subcontinuum of M separates the plane, (2) no two (distinct) nondegen-

erate subcontinua of M are homeomorphic, and (3) M does not contain

uncountably many disjoint nondegenerate subcontinua.
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Proof. The inverse limit set of the sequence {Mi} with respect to

{fi} of Lemma 2 is such a continuum M. That it can be embedded

in the plane follows explicitly from Theorem I or a straightforward

argument using conditions (6) and (7).

We prove that M satisfies condition (2). Suppose the contrary. Let

Ai and X2 be distinct nondegenerate subcontinua of M and without

essential loss of generality assume that Ai and X2 are disjoint. (For

if not, one must contain a subcontinuum Yi not intersecting the other

and Yi must be homeomorphic to a subcontinuum Y2 of the other.)

From Theorem II (or a straightforward argument) it follows that

for each i and each j, j > i, the maps fn and /< (of M onto Mi) are

A -maps. By definition the property of being an A -map is hereditary

on subcontinua. Let ij,j = l, 2, be the least number such that/,y(Ay)

is nondegenerate. Then each of JniXi) =5,- and/,-2(A2) =S2 is an w-od

or an arc. Si and S2 do not intersect but they may be homeomorphic.

For j = l, 2, let ♦/ be the least number greater than ij for which

ffj'(Xi) is not homeomorphic to fo-iiXj) (and by condition (5) of

Lemma 2 such a number must exist). Let Sj be fi.'(X,),j=l, 2. Then

S{ contains an w-od T which is an inverse set of the^4*-map/ilj1' of

Si onto Si and S2 contains no similar w-od as an inverse set of the

A *-map /t-,,y of S2 onto S2.

But we note that an A -map of Xi or X2 onto an arc or w-od induces

a unique (atomic) decomposition of Ai or X2 (except with respect to

order). Thus if Ai and X2 are homeomorphic, Si and S2 must be

homeomorphic and under some such induced homeomorphism of Si

onto S2 the inverses of corresponding points of Si and S2 under

/,-,,y and/,-2,y respectively must be homeomorphic. But such is impos-

sible and hence Ai and X2 are not homeomorphic.

The fact that no subcontinuum Ai of M separates the plane fol-

lows7 from the hereditary decomposability and hereditary unicoher-

ence of M (or Ai) which follow immediately from the above con-

siderations.

Property (3) follows easily. If Z were an uncountable collection of

disjoint nondegenerate subcontinua of M, then for some uncountable

subcollection W of Z there must exist an integer i such that for every

wEW, fi(w) is nondegenerate. Hence fi(M) = Mt must contain un-

countably many disjoint nondegenerate continua, an impossibility.

Theorem III is proved.

7 For suppose a continuum X separates points p and q in the plane. Then some

subcontinuum X' of X is irreducible with respect to separating p from q. But X' is

decomposable and hence is the sum of its proper subcontinua Ki and Y2. Neither of

these separates p from g so YiC\ Y% is not connected and X' is not unicoherent.
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4. Two further theorems. We now state Theorems IV and V and

suggest how the proof of Theorem III can be modified to yield them.

Theorem IV. There exists a plane continuum M' such that (1) every

nondegenerate subcontinuum of M separates the plane and (2) no two

distinct nondegenerate subcontinua of M are homeomorphic.

The condition (3) of Theorem III follows from condition (1) of this

theorem.

In the proof of Theorem IV, in lieu of an w-od we would use a

continuum which is the sum of finitely many simple closed curves

all and each pair having exactly one point in common. Call such a

continuum a loop-set. M{ could be taken to be a simple closed curve.

The rest of the ideas of the proof go through noting that Si and St

of the proof of Theorem III would become subcontinua of a loop-set.

Theorem V. There exists a one-dimensional continuum M" such

that (1) no nondegenerate subcontinuum of M" is embeddable in the

plane (2) no two distinct nondegenerate subcontinua of M" are homeo-

morphic and (3) M does not contain uncountably many disjoint non-

degenerate subcontinua.

In proving Theorem V we would introduce a set which is an w-od

plus a 1-skeleton of a 4-simplex, the two sets having just the branch

point of the w-od in common with a vertex of the 1-skeleton of the

4-simplex. Then every nondegenerate subcontinuum would contain

a continuum admitting an atomic map onto a 1-skeleton of a 4-

simplex and thus as can be shown, would not be embeddable in the

plane.
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