
COMPACTIFICATIONS OF DIMENSION ZERO

L. J. HEIDER1

1. Introduction. A cr. space A is here understood to be a com-

pletely regular 7\ space. A continuous function on A is understood

to be real-valued, and the symbol C(X) denotes the collection of all

such functions. For each element / of C(X), let N(f)= [x:fix)<0].

Consider the following requirements with respect of the set N(f):

(I) N(f) is closed (and open);

(II) N(f) is open (and closed);

(III) N(f) is a countable union of open-and-closed (cloven) sets.

The cr. spaces, in which each set N(f) satisfies (I), are the P

spaces of [2; 3] and enjoy many interesting alternate characteriza-

tions. The cr. spaces, in which each set A(/) satisfies (II), are char-

acterized as the cr. spaces X for which the lattice C(A) is condition-

ally o--complete, or, equivalently, for which the Stone-Cech compac-

tification space PX is the Boolean representation space of a ir-com-

plete Boolean algebra [3; 7].

Requirement (III) drastically weakens (I). Yet, the first purpose

of this note is to show that (III) characterizes an important class of

cr. spaces, viz., those cr. spaces X for which PX is of dimension

zero, in the sense of possessing a base of cloven sets. From this it will

follow that (I)=>(II)=»(III).
If A is of dimension zero, attention focuses on the field of cloven

subsets of A. If, moreover, PX is of dimension zero, it is the Boolean

representation space of this field of sets, viewed as partially ordered

by the inclusion relation. These are set-theoretic considerations. Op-

posed to this, requirement (III) involves the consideration of

continuous functions. In addition to (III), there are two established

[3; 5] characterizations of the cr. spaces A for which pX is of dimen-

sion zero: (i) for each pair A and B of separated sets in X, there is a

cloven set in A containing A and disjoint from B; (ii) each finite

normal open covering of A possesses a refinement which is a finite

partition of X into cloven sets. Condition (i), in the concept of sepa-

rated sets, refers to continuous functions. The concept of a normal

covering, employed in condition (ii), is difficult of expression in any

form and is, perhaps, best expressed in terms of continuous functions

[4]. The second purpose of this note is, therefore, to replace condi-
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tions (i) and (ii) and likewise requirement (III) by an equivalent

condition based exclusively on set-theoretic concepts. This is accom-

plished for all cr. spaces, but with the most notable simplicity for

normal spaces.

For cr. spaces X with [5X of dimension zero, the preceding empha-

sis on set-theoretic techniques should extend to the consideration of

continuous functions. The concluding section of this note describes

a countable, purely set-theoretic technique for construction of all

continuous functions pertaining to a cr. space X with (3X oi dimen-

sion zero.

2. Compactifications of dimension zero. Let X be a cr. space, and

let/ be an element of C(X) with finite bounds a and b. Then, in terms

of Stone's spectral representation of continuous functions [7], to each

real number r there is assigned an open subset E/(r) of X such that:

(1) Es(r)=4> for all rfka,

(2) Ej(r)=Dr-<rEf(r') for all r,

(3) Eflr^QE^r) for r'<r,
(4) Ef(r)=Xiorr>b.

Conversely, any family \E(r)]rBR of open subsets of X, satisfying

conditions (l)-(4) for some pair a Sb of real numbers, determines

uniquely a bounded continuous function / on X with [x:/(x)<r]

= E(r).

The significance of requirement (III) of the introduction is now

partly revealed.

Theorem 2.1. // a cr. space X is such that I3X is of dimension zero,

then each spectral set E/(r), and thus the set N(f), of each element f of

C(X) is a countable union of cloven subsets of X.

Proof. Let/ be a bounded continuous function on X, and let/ be

its unique extension over J3X, the latter being assumed of dimension

zero. For arbitrary real numbers r\ <r2, Er(ri)cz[pEPX:f(p) Sn\

C.Ej(r2). With /3A compact and of dimension zero, a cloven subset

G of j3X may be chosen with [pEI3X:f(p)g,ri)QGCEj(r2). Then

Ef(ri)C.0C.Ef(r2), where 0 is the cloven residue in X of the cloven

subset G of fiX.
Finally, with {rn} a monotone increasing sequence of numbers

approaching the number r as a limit, from Ef(r) = Ur'<r Ef(r')

= U^°=i E/(rn), one concludes that Ef(r) is a countable union of cloven

subsets of X.

Assume, now, that the cr. space X is such that each set N(f), for

/ in C(X), is a countable union of cloven subsets of X. Note that

N(-f) =P(f) = [x:f(x)>0] and E,(r) =N(f-r). With n<r2, for any
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element/ of C(A), the set [x:f(x) Sri] is a countable intersection of

cloven subsets and is contained in the countable union of cloven sets

[x:f(x) <r2]. The following lemma is now useful:

Lemma 2.2. // {0„} and {G„} are two sequences of cloven subsets of a

topological space X, with D"=1 0„CU^=1 Gn, then there exists a cloven

subset L of X with O^-i 0„CLCU™=n Gn-

Proof. Form a sequence {Hn} of cloven sets, with Hin-i = Gn and

U2n = 0n, where 0„ denotes the cloven complement in A of 0„. Each

point of A is in some set Hn. Next form {H*} with LL* = H„ — Uisi<„ Hn

The sets II* are cloven, pairwise disjoint and cover X. Finally, let

L denote the point-set union of all LL* containing points of the set

f~C-i 0«. while M denotes the union of the remaining LL*. Then L

and M, as disjoint unions of open sets with L\JM = X, are seen to

be cloven subsets of A. Finally, fln-i 0„CLC|J"=1 G„ as desired.

Let X continue to denote a cr. space for which all sets N(f), with

/ in C(A), are countable unions of cloven sets. It is clear that the

cloven sets then constitute a base for the topology on X. These

cloven sets, as ordered by the inclusion relation, form a Boolean

algebra. Let r\X denote the Boolean representation space of this alge-

bra. The points of t]X will here be regarded as prime dual ideals of

cloven sets of A, i.e., proper subsets of the collection of all cloven

sets, closed under finite intersections of their elements, and maximal

with respect to these properties. Each point of A determines,

uniquely, such a prime dual ideal, and A is seen to be imbedded as a

dense subspace of r\X.

In general, for any cr. space X of dimension zero, the space i?A

serves as a maximal compact space of dimension zero, containing X

as a dense subspace [l]. However, under the present assumptions,

rjX = pX, the Stone-Cech compactification space of X. Thus, as ap-

pears from the preceding discussion, for any (bounded) element /of

C(A) and any pair of numbers ri<r2, there exists a cloven subset 0

of A with Ef(ri)Q0^ZEf(r2). However, each prime dual ideal (point)

of 77A contains either this cloven set 0 or its complement. Then,

using only the fact that a sequence of closed, nested intervals of the

real line, of widths approaching zero, determines a unique real num-

ber, for each prime dual ideal (point) a of r]X and for each bounded

element/of C(A), it is possible to assign a real number/(a) such that,

for each e>0, there is a cloven set 0 in a with \f(a)— f(x)\ <e for

each point x of X in 0. Clearly the function/ thus defined on rjX is a

continuous extension of the given bounded element/of C(X).

In view of this discussion and of Theorem 2.1, our first contention

is now established.



380 L. J. HEIDER [June

Theorem 2.3. The cr. spaces X for which (3X is of dimension zero

are the spaces X for which each set N(f), f in C(X), is a countable

union of cloven sets.

3. A set-theoretic characterization. The purpose of this section is

to reduce the characterization of the cr. spaces X for which @X is of

dimension zero to the simplest possible set-theoretic terms. To this

end, a definition and theorem of recent origin [6] will be of service.

Definition. Let 3TC be any family of open subsets of a cr. space X.

Then "SK will be called a completely regular system of open sets if, for

each element M of 3TC, there are sequences { Mf } and {Mn" } of ele-

ments of 3H with MI QMn"QM and M = \J„-i Mn' - (Here M„" de-

notes the complement in X of the set Mnn ■)

For any element/ of C(X), with X a cr. space, the system of all

subsets /_1(0) of X, with 0 an open subset of the real line, is clearly

a completely regular system of open subsets of X. However, even

more can be asserted.

Theorem. Every element of any completely regular system of open

sets of a cr. space X has the form f~r(0) for some element f of C(X) and

some open subset 0 of the real line.

The proof of this theorem, as it appears in [6], is an interpreta-

tion of involved properties of certain abstract systems. However, the

theorem itself has a simple application to our present task.

Theorem 3.1. The cr. spaces X for which fiX is of dimension zero

are the spaces in which the system of all countable unions of cloven sets

includes every completely regular system of open sets.

To establish this theorem, it needs only to be noted that sets of the

type/_1(0) include all spectral sets, while each set of the type/_1(0)

is a countable union of finite intersections of spectral sets Ef(r) and

Eg(r), where g= —/and/is an element of C(X). For any cr. space X,

the system of all countable unions of cloven sets obviously constitutes

a completely regular system of open sets. Thus, the theorem simply

requires that this particular system be the greatest such completely

regular system of open sets.

If /3X is to be of dimension zero, the topology of X must be based

on the field fJ of cloven subsets of X. This field must be reduced, in

the sense that distinct points of X are contained in complementary

elements of fJ, and it must be union-intersection closed, in the sense

that any subset of X which is both an intersection and a union of

elements of ff is itself an element of SF.
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Now let SF be such a reduced, union-intersection closed field of sub-

sets of a set X. The symbol 0, with or without subscript, will be re-

served to denote elements of SF. Let A(SF) indicate the cr. space ob-

tained by using the elements of SF as a base for open sets in X. The

symbol L)0„ will denote a general open set of A(SF), while Ur 0„ will

indicate an open set contained in a completely regular system of open

sets, and f\r 0P will indicate the complement in A of such a set.

Finally, let »/A(SF) represent the Boolean representation space of SF.

The basic question concerns set-theoretic conditions under which

7?A(SF)=,3A(SF).

Theorem3.2. Thecondition {nr0»CZUr0^=>30 withC\r 0,C0CUr0M}

is equivalent to the condition that »?A(SF) =j6A(SF).

Theorem 3.3. The condition {no„c:UO„=*30 with flO^COCUO^} is

equivalent to the double condition that A(SF) be normal and ijA(SF)

=/3A(SF).

As regards Theorem 3.2, if r;A(SF) = /3A(SF), then, by Theorem 3.1,

each l~\r 0, is a countable intersection and each Ur 0„ is a countable

union, and Lemma 2.2 applies. Conversely, if C\T0rC.\JT0u always al-

lows Dr 0»CZ0C:Ur 0„, then each Ur0„, as a member of a completely

regular system of open sets, is seen to be a countable union of cloven

sets, and Theorem 3.1 applies.

As regards Theorem 3.3, if flO^ClUO,, always allows flO^COCUO^,
then A(SF) is obviously normal and, by Theorem 3.2, ^A(SF) =j3A(SF).

Conversely, with /3A(SF) =tjA(SF) and thus of dimension zero, from

the normality of A(SF) it is clear that n0»CU0M always allows no,CO

As an application of Theorem 3.3, with A, SF, A(fF) and »?A(SF) as

described above, certain cases wherein A(SF) is normal and ??A(SF)

=/3A(SF) may be noted:

(a) A(SF) possesses a countable base of open sets;

(b) each U0^ may be represented as a countable union of cloven

sets;

(c) A(SF) has the Lindelof property;

(d) each binary covering of A(SF) by open sets may be refined by a

partition of A into cloven sets.

As an application of Theorem 3.2, the following case is of some

importance. Let SF continue to denote a reduced, union-intersection

closed field of subsets of a set A. However, now also assume that SF

is a <r-field, in the sense that any countable union of elements of SF is

again an element of SF. Let SHI denote a completely regular system of
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open subsets of AT(JF), and let Mbe an element of 3TL Then, by defini-

tion, there exists a sequence {M" } of elements of 3TC with M

= U^-i Ml'. Each element M" is of the form Mn" = C\y€in 0„,„ where

each On,, is an element of EF and each /„ is an index set. Then

m = u I  n o„,J = n | u 0n,hM\
n-1 L vetn J heH L n—l J

where H is the collection of all functions h on the positive integers

with h(n) in 7„. However, each U™=1 On,h(n), as a countable union of

elements of fJ, is an element Oj, of JF. Hence M=C\heH0h, and M is

seen to be a cloven set in X(3) and thus an element of iF. The cr.

spaces X(3) constructed with elements of a reduced, union-intersec-

tion closed, cr-field JF of subsets of A" as a base for open sets are identi-

cal with the P spaces of [2; 3], i.e., the cr. spaces X for which each

set N(f),f in C(X), is closed (and open).

4. The construction of continuous functions. Let the cr. space X

be such that /3A is of dimension zero. Let / be an element of C(X)

and, for the sake of simplicity, assume that/ is bounded with 0 Sf(x)

fkl throughout X. As indicated in the proof of Theorem 2.1, for

each pair n <r2 of real numbers, there is a cloven subset 0 of X with

E;(ri)CkOCkEf(ri). Now let r2 = p/2n where p is an odd positive integer

lg£<2nand let n = (2p — l)/2n+1. Let [p/2n] symbolize a cloven set

such that E,(2p-l/2n+1)c[p/2n]QE/(p/2n).

As r2 = p/2" exhausts the sets 1/2; 1/4, 3/4; 1/8, • • • , an array of

cloven sets is formed:

[1/2]

[1/4] C [1/2] C [3/4]

[1/8] C [1/4] C [3/8]; [l/2]} C [5/8] C [3/4] C [7/8]

[1/16] C [1/8] C [3/16]; [l/4]} C [5/16] C [3/8] C [7/16];

[1/2]} C [9/16] C • • •

Here CZ denotes set inclusion. The symbol }c[/>/2n] indicates

that the set [p/2n] contains every set to the left of the bracket in

the row under consideration. Finally the presence of the semi-colon,

rather than the inclusion symbol, indicates that no inclusion relation

is asserted in regard to the sets immediately adjacent to the semi-

colon.
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From this array, the spectral sets Ef(r) of the element/of C(X),

and thus the element/ itself, can be recovered. Thus, for 0<r^l,

£,(/)= Uo<P/2»<r [p/2"], while Es(r)=<b for rSO, and Ef(r)=X for

r>l.

Now let {0„} denote any sequence of cloven subsets of X. Let

[1/2] =0l Let [l/4]=02n[l/2] and [3/4]=0,U[l/2]. Let [1/8]

= 04n[l/4], [3/8] = (0,U[l/4])n[3/4], [S/8] = (0,U[3/8]W[l/2])
P\[3/4] and [7/8]=0yU[3/4]. Continuing in this manner, through

the exclusive use of finite set unions and intersections, an array of

cloven sets [/>/2n] is constructed enjoying the inclusion relations

indicated above.

Now consider a quadruple

} C [(4w + l)/2»] C [(4m + 2)/2»] C [(4w + 3)/2»];

[(4m + 4)/2»]} C,

An easy induction shows that, for 0<p/2'S(4m + l)/2", [p/2']

C [(4w-f-3)/2B]. In fact, in the illustrative array derived above from

a continuous function by the stated process, actually [p/2']

C [(4w+2)/2n]. An elementary, but difficult to describe, change in

the procedure for constructing the [p/2"} from a given sequence

{0„} of cloven sets would accomplish the same effect, but the change

is unnecessary.

With the array of [p/2"] formed as above from the given J0„},

let £(r)=Uo<J,/2»<r [p/2"] for 0<rSl, while E(r)=<p for rSO and

E(r)=X for r>l. For each pair 0^n<r2^1 of real numbers, it

is clearly possible to find positive integers m and n such that

rx<(4m + l)/2"<(4m+3)/2"<r2. Then £(r,)C [(4w+3)/2"]c;£(r2)

where [(4iw+3)/2"] is a cloven set. From this it follows that the

family [£(r)]re«, thus constructed, is the spectral family of a

(bounded) continuous function on X.

Since spectral families for unbounded continuous functions can be

obtained from the spectral families of continuous functions / with

0</(x)<l throughout A, the stated procedure suffices to describe

all elements of C(A) when PX is of dimension zero.

In conclusion, the following may be noted. Let Sf be a reduced,

union-intersection closed field of subsets of a set A, and let A(SF) and

■nX(5) be as described earlier. Then the bounded, continuous func-

tions on A(SF) that can be extended over »?A(!F) are precisely those

bounded functions on A(SF) that are formed by the above countable,

set-theoretic procedure, as applied to the subsets of X in SF.
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