
REMARKS ON THE COMMUTATIVITY OF RINGS

M. F. SMILEY1

Introduction. A celebrated theorem of N. Jacobson [7] asserts that

if (1) x*(x) =x for every x in a ring R, where n(x) is an integer greater

than one, then R is commutative. In a recent paper [2], I. N. Her-

stein has shown that it is enough to require that (1) holds for those

x in R which are commutators: x= [y, z]=yz — zy of two elements

of R. The purpose of this note is to show that if R has no nonzero

nilpotent ideals, we may restrict x in (1) to iterated commutators of

any fixed degree. We also obtain a weaker result for arbitrary rings.

An important tool in the proof of our results is a lemma which

generalizes a result of Kaplansky [4] to the effect that the only

elements of a primitive ring which commute with all commutators

are in the center. This tool is also useful in extending and comple-

menting some results of Divinsky [l] on commuting isomorphisms

of simple rings. These extensions include some recent results of Posner

[9] on derivations in prime rings. As a final remark, we indicate an

exceedingly brief proof of Herstein's result [3 ] on Jordan derivations

in prime rings.

Although the proof of our first result follows that of Herstein

very closely, we present a self-contained account for the convenience

of the reader.

A generalization of Herstein's theorem. Before we state our theo-

rem, let us introduce a bit of notation. In a ring R, define L0(R) =R,

and, inductively, Lk+i(R) = { [x, y]; xER, yELk(R)} for each non-

negative integer k. We shall also use the notation xD(y) = [x, y] for

x, yER-

Theorem 1. Let k be an integer S; 1 and let R be a ring in which (1)

holds for every xELk(R). Then Lk(R) =0. If also k = l or if R has no

nonzero nilpotent ideals, then R is commutative.

Case 1. R is a division ring. Suppose that u= [a, b]^0 for some

aER and some bELk-i(R). We have un = u and (Xu)m=\u for each
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X in the center Z of R and m, re>l. With s = (n — l)(m —1) + 1>1, we

obtain u' = u, (Xm)* =\u and it follows that Z has characteristic pT^O

and each \EZ is algebraic over the field P of p elements. If uEZ,

then bu is not in Z and b[a, b}= [ba, b] may replace u in the ensuing

argument. Let m(x) be the minimum polynomial of u over Z and let

F be the field obtained by adjoining the coefficients of m(x) to P.

Then F is finite and has q=pv elements. Hence uq = u is impossible

for the equation xq— x = 0 can have no more than q roots in the field

F(u). Thus uq7*-u. But m(w) =(m(u))q = 0 and hence uq = r~1ur for

some rGi? [6, p. 46]. Set z =Dk(u) = r(u-uq)kELk(R). Then P(re, z)

is a finite division ring and uz =zu by the little Wedderburn theorem.

But uz=zu yields zuq = zu, u" = u, a contradiction.

Case 2. R is a prime ring. Here R has no nonzeronilpotent ele-

ments. For if x2 = 0 with xER, let n, • • • , rkER- Then y=xrixr2x

• • ■ xrkx = xD(rix)D(r2x) ■ ■ ■ D(rkx)ELk(R), and y2 = 0 yields y =0.

Using the primeness of Rk times, we get x = 0. As usual, it follows

that all idempotents of R are in the center of R.

Case 3. R is a primitive (and hence prime) ring but R is not a divi-

sion ring. Let p be a maximal right ideal of R which contains no non-

zero two-sided ideal of R. Clearly p contains no nonzero central idem-

potents and hence, by Case 2, Lk(p) =0. For aEp, rER, bELk-i(p),

we have arEp and [ar, b] =a[r, b] =0. By the primeness of R and the

fact thatp^O, we find that bEZC\p = 0 and it follows that Lk-i(p) =0.

By induction we obtain 7o(p) =p = 0. Hence R is a division ring, con-

trary to hypothesis.

Case 4. R is an arbitrary ring. If TV is the Jacobson radical of R,

then R/N is a subdirect sum of primitive rings which satisfy the

condition of the theorem. By Cases 3 and 1, Lk(R/N) =0. If tELk(R),

then t + NELk(R/N) =0, tEN, tn~1 = 0 (being an idempotent of N),

t = tn = 0, as desired.

The proof of Theorem 1 will be completed by means of the follow-

ing

Lemma. Let R be a ring with no nonzero nilpotent ideals. Let aER

and let k be a non-negative integer. Then [a, t]=0 for every tELk(R)

if and only if a is in the center of R.

Proof. The lemma is clear if k = 0. We use induction on k. Let

uELk-i(R), xER, and compute

[a, u][a, x] = [a, [a, u]x] — [a, [a, u]]x

= [a, [ax, u] — a[x, u]]

= - a[a, [x, u]] = 0.
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Using this result, we obtain

0 = [a, u] [a, xu] = [a, u] x [a, u] + [a, u] [a, x]u = [a, u] x [a, «].

It follows that [a, u]=0 since [a, u] generates a nilpotent ideal. By

our inductive hypothesis, a is in the center of R. The converse is

trivial.

The ring R of all k by k upper triangular nilpotent matrices over a

field has Lk^i(R) =0, but R is commutative only if k^2.

Some remarks on related results. We shall now turn to our gen-

eralization [lO] of the work [l] of Divinsky.

Theorem 2. Let a-^a' be a nontrivial endomorphism of a prime ring

R onto R and let (2) [a, a'] =0 for all aER- Then R is commutative.

Proof. By linearity, [a', b] = [a, b'] for all a, bER- Hence [a'b', c]

= a'[b', c]+[a', c]b'=[ab, c']=a[b, c']+[a, c']b and we have

(a'-a)[b, c'] + [a, c'](b'-b)=0 for all a, b, cER. Set c = b and find

that [a, b'](b'-b)=0 for all a, bER. Then 0=[czx, b'](b'-b)
= [a, b']x(b'-b) yields [a, b'] =0 or b' =b for all a, bER. If wER-Z,
then [a, w'] = [a', w] t^O for some aER (because the mapping ' is onto

R), and it follows that w = w'. Additivity of the mapping ' forces

a' =a for all aER, contrary to assumption. Thus R — Z is empty and

R is commutative.

Theorem 3. Let a—><z' be an anti-endomorphism of a ring R onto R

and let [a, a']=0 for all aER. Let R have no nonzero nilpotent ideals.

Then every xER satisfies x2 = cx+d with c and d in the center Z of R.

Proof. As before, [a, b'] = [a', b] for all a, bER, and we obtain

(3) a[x, b'] + [a, b']x = x'[a', b]+ [x', b]a' for all a, b, xER- Set x = b

and get (4) [a, b']b = b'[a', b] for all a, bER. By linearity, [a, b']x

+ [a, x']b = b'[a', x]+x'[a', b] for all a, b, xER- Interchange a and b

and add to (3) to find that [a, [x, b']] = — [a', [x, b']] or [a+a',

[x, i>']]=0 for all a, b, xER- By the Lemma, a+a'EZ. Now [a'a, x]

= a'[a, x]+ [a', x]a, and use of (4) gives [a'a, x]=a'[a, x+x'] =0 for

all a, xER- Thus a'aEZ and we have a2 = (a+a')a — a'a for all aER.

Remark 1. If we assume that the ring R of Theorem 3 is primitive,

a result of Kaplansky [5] assures us that R is commutative or is a

quaternion algebra over Z.

Remark 2. In Theorems 2 and 3, we may assume only that (5)

[a, a']EZ for every aER and still reach the same conclusions. In

Theorem 2, for example, linearity and (5) give [[aa', a']+[a, a'a"],
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a']=0. Expansion and use of [[a, a"], a']=0, valid by (5) and Ja-

cobi's identity, give [a, a'] [a", a'] =0, and hence [a, a'] =0 since the

mapping ' is onto. An analogous computation is used in the case of

Theorem 3. (When 2 ̂ 0 in R and R is prime, we may dispose of both

cases at once since (6) [a2, a'2]=2[a, a'](aa'+a'a)EZ yields [a, a']

= 0 or aa'EZ, [aa', a] =a[a', a] =0, [a', a]=0.)

Remark 3. Posner [9] has discussed a derivation a—*a' of a prime

ring R into R which satisfies (2), or, more generally, (5). Such a

derivation gives rise to a homomorphism

*      [~°    a"\
a-^> a* = \

L0    a J

of R into a matric ring i?i [6, p. 102]. We may regard R as a subring

of Ri in an obvious way. Then (2) yields [a, a*] =0 ior all aER, and

the proof of Theorem 2 gives [a, b*]x(b* — b)=0, which becomes

[a, b]xb' = 0 for all a, b, xER- Thus (2) yields the commutativity of

R or the triviality of the derivation. When only (5) holds, we obtain

[a, a*] in the center of Ri for all aER- If 2^0 in R, (6) shows that

a2[a, a']EZ, [a2[a, a'], a']=2[a, a']2 = 0, and (2) holds. When 2=0

in R, a direct proof of (2) from (5) is as follows. By (5) and linearity,

[[aa', a']+[a, (aa')'], a]=0, or -[a, a']2+[a[a, a"], a]=0. But

(5) and linearity show that [a', a'] + [a, a"] EZ, and hence [a, a']2 = 0

and (2) holds.

Remark 4. Herstein [3] has discussed a Jordan derivation a—»a'

of a prime ring R, i.e., an additive mapping of R into R for which the

induced mapping a—>a* of Remark 3 satisfies (a2)* = (a*)2, (aba)*

— a*b*a* ior all a, bER and is, therefore, a Jordan homomorphism

of R into Ri. With ab= (ab)* — a*b* and ab=(ab)* — b*a*, we have

(7) abab = ahah = ahr*ab + ahr*ab = 0

ior all a, b,rER- (See [ll; 12].) With {a, b] = (ab)'-(ab'+a'b), the

identities (7) become

[a, b]{a, b}  = {a, b}[a, b] = [a, b]r{a, b} + {a, b}r[a, b] = 0

for all a, b, rER- The simple linearization argument of §2 of [ll]

yields that R is commutative or ' is an ordinary derivation of R.

It is an easy consequence that a ring in which 2x = 0 implies x = 0

and in which zero is the only nilpotent ideal has no Jordan derivation

which is not an ordinary derivation. However, it is possible that the

Lie ring of Jordan derivations of a ring may yield some information

about radical rings.
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