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1. Introduction. It is well-known that a circle can be surrounded

by six translates of itself in such a way that the translates are each

tangent to the original circle, are nonoverlapping, and their union

encloses the original circle. In this note we extend this result in

several directions. In §2 we show that a very wide class of bounded

sets in E2 have a similar property. To keep the proof from being

overly complicated we limit ourselves to the proof that this property

is possessed by all sets consisting of the closed interior of a Jordan

curve.

In §3 we consider higher dimensional bodies and show that the

number of nonoverlapping spheres which can touch a given sphere

serves as a lower bound of the number of nonoverlapping reflections

in hyperplanes which can touch any given body. We also give some

crude estimates of this number.

2. We shall have need of the following definitions.

Definition 1. Two sets are contiguous if their intersection is non-

empty and is equal to the intersection of their frontiers.

Definition 2. A set A encloses a set B if every unbounded con-

nected set which intersects B also intersects A.

The principal result of this section is stated in the following theo-

rem.

Theorem. Let S be the closed interior of a Jordan curve. Then for

any direction 9 there exist six translates of S with the following proper-

ties:

(1) One translate is in the direction 8.

(2) Each translate is contiguous to S.

(3) No two translates have interior points in common.

(4) Each translate is contiguous to two others.

(5) The union of the six translates encloses S.

We shall now give a sequence of lemmas designed to facilitate the

proof of this theorem.

Let a rectangular coordinate system be established with the origin

at an interior point of S. The image of 5 under the translation which
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moves the origin to a point p= (x, y) will be denoted by S(p) or, if

coordinates are essential to the argument, by S(x, y).

Lemma I. If A is any connected set such that there exist points p and

q of A for which S(p)f}S is null and S(q)t~\S is non-null, then there

exists a point r of A such that S(r) is contiguous to S.

Proof. Assume that there does not exist a point r oi A such that

S(r) is contiguous to S. Let U and V respectively, be the set of

points pEA ior which S(p)C\S is null and the set of points pEA

ior which S(p)C\S is non-null. The sets U and Fare non-null by hy-

pothesis and it is clear that their union is A. We shall now show that

U and V are relatively open in A, which will contradict the assump-

tion that A is connected.

Let u be any point of U. Since S, and therefore S(u), is compact,

and Sr\S(u) is null, it follows that there is a positive distance 5 be-

tween the two sets. It follows immediately that U is open, since if

u' is any point of a circular neighborhood of u with radius 5/2, then

SC\S(u') is null. Now let v be any point of V. From the definition of

F and our hypothesis we are forced to conclude that there exists an

interior point of SC\S(v). But this implies that v is an interior point

of F, whence F is open. This completes the proof of our lemma.

Let IF denote the set of points p for which S(p) is contiguous to S.

It is an immediate consequence of Lemma 1 that W encloses S. It

is also easy to prove that IF is symmetric with respect to the origin.

We shall let Ew denote the set of points enclosed by IF.

Lemma 2. The set Ew is compact.

Proof. Since Ew is clearly bounded, it suffices to show that it is

closed. To this end let p be any point of the complement of Ew- There

exists an unbounded connected set G containing p such that the inter-

section of G with W is null. Since G obviously contains a point q

such that S(q)C\S is null we see that S(p)f~\S is null. For if this were

not so it would follow from Lemma 1 that GC\Wis non-null. Thus,

since S(p) and 5 are a positive distance apart, it follows that there

exists a neighborhood of p, such that if p' is any point of this neigh-

borhood then S(p')C\S is null. We therefore conclude that the com-

plement of Ew is open, whence Ew is closed.

Let I denote the set of points p such that S(p)C\S is non-null. It is

not difficult to show that I is contained in Ew, but in general is un-

equal to Ew, and that IF contains the boundary of Ew, but in general

is not equal to it.

Lemma 3. Ew is a continuum.
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Proof. We need only prove that Ew is connected. We first prove

that I is connected.

Suppose that (x, y)EI- Then there exists a point (x0, yo)ES(x, y)

C\S. (Note that this implies that (x0 — x, yo~y)ES.) It is obvious

that S(x — Xo, y — yo) is connected and that it must contain the points

(x, y) and (0, 0). Both 5 and S(x — x0, y — yo) are contained in I. We

now associate with (x, y) the set Cxy = S(x — xa, y — y0)W5, which is

a connected set contained in / and containing (x, y). The set

U(x,i,)er Cxy is a connected set since it is the union of a set of connected

sets each of which contains .S. Thus, since U(X,y)ei Cxy is clearly equal

to /, we have proved that I is connected.

Now, to show that Ew is connected, we let (x, y) be any point of

Ew and associate with (x, y) a set, in the following manner. If

(x, y)EI we associate with (x, y) the set I. If (x, y)EJ let (x', y')

be a point of / which is closest to (x, y). Such a point exists since /

is compact. We now associate with this (x, y) the set consisting of the

union of / with the line segment from (x, y) to (x', y'). The line seg-

ment belongs to Ew- For suppose there were a point (a, b) belonging

to the segment, but not contained in Ew Then, by Lemma 1, there

exists a point of W between (x, y) and (a, b). But, since it is clear

that W is contained in /, this contradicts the fact that there are no

points belonging to / that are closer to (x, y) than (x', y'). We have

thus associated with each point of Ew a connected set which contains

I and is contained in Ew- It follows immediately that their union is

connected and is Ew-

Lemma 4. The complement of Ew is a generalized continuum (i.e. a

locally compact, connected set).

We need only prove that the complement of Ew is connected since

it is clearly locally compact. This connectedness follows immediately

from the fact that all points of this complement can be joined to

infinity.

Lemma 5. The boundary of Ew, bd Ew, is a continuum.

Proof. This is an immediate consequence of Lemmas 3 and 4 and

a corollary to the Phragmen-Brouwer theorem which states "If the

boundary A of a complementary domain of a generalized continuum

is bounded, A is a continuum" [l, p. 106].

Lemma 6. // S(p) and S are contiguous, then bd Ew and bd Ew(p)

have a non-null intersection.

Proof. Assume that 5 and S(p) are contiguous and that bd Ew
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and bd Ew(p) have a null intersection. If q is a point of contiguity

of S and S(p), then q is an interior point of Ew and Ew(p), for it is

clear that S Eint Ew and S(p) C int Ew(p). Therefore int Ew

Piint Ew(p) is nonnull, and it follows, since Ew is connected and

ext Ew(p) contains points of int Ew that int Ew has a nonnull inter-

section with bd Ew(p)- From this we infer that bd Ew(p) is not con-

nected, since

bd Ew(p) = (int Ew n bd Ew(p)) W (ext Ew f\ bd Ew(p)).

This gives the desired contradiction.

From Lemma 6 we conclude that, if S(p) and 5 are contiguous,

then there exists a translate S(q) which is contiguous to both 5 and

S(p). The following lemma demonstrates that p and q cannot be co-

linear with the origin.

Definition 3. If a, bEbd S, then a spanning arc from a to b in 5

is a closed arc [a, b] such that [a, £>]C-Sand [a, b]f~\bd S= {a, b\.

Lemma 7. (a) Any two translates of S in the same direction that are

both contiguous with S have interior points in common, (b) Any two

translates of S in opposite directions that are both contiguous with S

have no points in common.

Proof of (a). Assume that S(p) and S(q) are translates, in the same

direction, of S which are both contiguous to S and that int S(p)

(~\int S(q) is the null set. Let the positive x-axis be in the direction

of the translations and let L and U be, respectively, the lower and

upper lines of support of the configuration which are parallel to the

x-axis. Assume that the distance from p to the origin is greater than

that from q to the origin and let r and / be the points of L(~\S(q)

and UC\S(q), respectively, which have the largest abscissas. Then

the union of a vertical ray emanating upward from t, a vertical ray

emanating downward from r and a spanning arc from r to / in S(q)

separates the plane so that 5 and int S(p) are in different components.

But, since S(p) and 5 are contiguous, they must have a point in

common along the spanning arc from r to /. Since r and t cannot be

elements of S we see that Sf~\S(p)r\int S(q) is non-null. This implies

that S(q) and S(p) have interior points in common which contradicts

our assumption.

Proof of (b). If S(p) and S(q) are translates of S, in opposite direc-

tions, then S and S(p) are translates, in the same direction, of S(q).

If we let U and L denote respectively, the upper and lower lines of

support of the configuration, we see that the union of a vertical ray

upward from UC\S, a vertical ray downward from L(~\S and a span-
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ning arc in .S which joins them, will separate the interiors of S(p) and

S(q). Therefore their intersection must either be null or consist en-

tirely of points of contiguity. But if they are contiguous it follows

from part (a) of the lemma that they have interior points in common,

which is a contradiction.

We now construct a set of six translates of S which are contiguous

with 5 and can be shown to satisfy the conclusions of our theorem.

Given any direction 6 let the coordinate system, with center at an

interior point of S, have the positive x-axis extend in the direction 6.

Let S(a, 0) =Si be a right translate of 5 which is contiguous with 5.

(Such a translate exists by Lemma 1.) By Lemmas 6 and 7 there

exists a translate S(b, c)=S2, such that c^O, which is contiguous

with both 5 and S(a, 0). We will assume that c>0. The remaining

four translates are S(b — a, c) =S3, S(—a, 0) =Sit S( — b, —c)=Si and

S(a — b, —c) =5e. By considering the various pairs of Si whose union

with 5 form congruent translates of SKJSi[US2 it is apparent that all

of the Si, i=l, • ■ ■ ,6, are contiguous to 5.

The successor to Si is 5,+i if i^d and Si if i = 6. It will be denoted

by Si. The successor to SI is Sf. The point (x, y) is called the center

of Six, y).

We note that, due to the manner in which we have constructed

the set of six translates, the centers of Si and Sf are symmetric with

respect to the midpoint of the line segment joining the center of S'

to the origin.

Lemma 8. The interiors of Si and Si' have no points in common.

Proof. Rotate the configuration S\JSi\JSt \JSf so that the posi-

tive x-axis passes through the center of St. With this orientation the

center of Sf will lie in the upper half plane and the center of 5< in

the lower half plane. Let L and R be the left hand and right hand

lines of support for the configuration which are parallel to the line

segment joining the centers of 5 and 5,-. Let p be the point of L(~\S

with the largest ordinate and q the point of RC\St, with the smallest

ordinate. If t is a point of contiguity of 5 and St, we see that the

union of a horizontal ray extending to the left from p, a horizontal

ray extending from q to the right, a spanning arc from p to t in S

and a spanning arc from t to q in St, separates the plane so that in-

teriors of Si and Sf lie in different components. This completes our

proof.

It is now an easy matter to see that the preceding lemmas imply

that the set of six translates which we have constructed satisfies the

first four conclusions of our theorem. In order to show that it also

satisfied the fifth conclusion we will have need of the following lemma.
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Lemma 9. If p and q respectively, are points of contiguity of Si and Si

with S, then they divide the boundary of S into a closed arc [p, q] and an

open arc (q, p) such that [p, q] contains a point of contiguity with S for

each Si, i= 1, • • • , 6, and (q, p) contains no points of contiguity with

S for any Si except possibly for Si or Si. (If p = q, then (p, q) is the null

set.)

Proof. Rotate the x-axis so that it is parallel to the line segment

joining the centers of 5, and Si. From a highest point r of Si con-

struct a horizontal ray extending to the right and from the cor-

responding point S of Si construct a horizontal ray extending to the

left. The union of these rays together with a spanning arc from r to p

in Si, a spanning arc from s to q in Si and a spanning arc from p to q

in 5 clearly separates the plane so that all contiguous translates Si,

i = l, ■ ■ ■ ,6, except Si and Si have their interiors in the lower com-

ponent. It also separates the boundary of 5 into arcs; one whose

interior lies in the upper component and the other in the lower

component. The open arc (q, p) in the upper half plane and the

closed arc [p, q] =bd S—(q, p), have the desired properties.

For each Si pick a point pi which is a point of contiguity of Si

with 5. Let [Sit Si ] denote the union of Si, Si and the open arc,

whose existence is guaranteed by Lemma 9, between the points of

contiguity of 5,- and Si with 5 which we have chosen.

We now complete the proof of our theorem by showing that Uj=1 Si

encloses 5.

We need only prove that D^i Si separates any interior point of 5

from infinity. Assume that it does not. From Lemma 9 we see that

[Si, S2] does not separate any interior point of 5 from infinity. Since

[Si, S2] and UJ=1 5< are both closed and their intersection which is

Si^JSt is connected, it follows that their union does not separate any

interior point of 5 from infinity. Continuing this process we conclude

that
6 6

U^UU [Si,Si]
1=1 1=1

does not separate any interior point of 5 from infinity. But this union

contains the boundary of 5 which gives us a contradiction and thus

concludes our proof.

3. Definition. A plane of support of a set 5 in a linear space L is the

boundary of a minimal halfspace of L which contains 5. Two sets

A, B in L are adjacent if they are on opposite sides of a common

plane of support and their closures A, B have a nonempty intersec-

tion.
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It is clear that adjacent closed sets are contiguous and that con-

tiguous convex bodies are adjacent. In fact, if two sets are adjacent

then so are their convex hulls.

Theorem. Let cn be the maximal number of unit spheres in E" which

can be adjacent to a given unit sphere without having interior points in

common. Let S be any bounded nonempty set in E", then there exist

sets Si, S2, • ■ • , SCn with the following properties.

1. Each Si is the reflection of S on a hyperplane of support 7T,- of S

iand is therefore adjacent to S).

2. For i^j the convex hulls, con Sit con Si, have no interior points in

common.

3. The direction of wi may be prescribed arbitrarily, the direction of

ttiC\w2 may be prescribed arbitrarily in tti, and so on for all iriC\TT2

r\ ■ ■ ■ r\ir. is=l, • • • , cn).

Remark. The number cn is known only for » = 1, 2, 3 with Ci = 2,

C2 = 6 and c3 = 12. It would be interesting, but probably difficult, to

find the general expression for c„ or at least an asymptotic evaluation.

We shall come back to this question later.

Proof. Consider a configuration % in E" consisting of a unit sphere

U and unit spheres Ui ii = 1, • • ■ , cn) such that Ui is tangent to U

at the point pi and Ui, Ui have no interior points in common for

*Vj.
This configuration determines a polyhedron P consisting of the

intersection of the half-spaces Hi which contain U and have the plane

of support to U at pi as boundary. It is obvious that P is convex and

we shall now show that P is bounded. If P were unbounded then

there would exist a half-line I with vertex at the center O of U which

lies entirely in the interior of P. Hence the angle which the line Opi

makes with I is nonacute. Thus all translates of U in the direction of

I lie in P. In particular we get the translate U' whose center 0' has

distance 2 from O, so that U' is tangent to U and has no interior

points in common with any one of the Un contrary to the hypothesis

that cn is maximal.

Two in — l)-faces F,, Fj of P are neighboring if they have an

(n — 2)-face of P in common. If F{, Fi are neighboring (n — l)-faces of

P which are tangent to U at pi, pi respectively, then ^piOpi^Tr/3

since otherwise the spheres Uit U,- would have interior points in

common.

Thus the reflections Pt of P on the planes of the (« — l)-faces Fi of

P have no interior points in common.

Now let S be any nonempty bounded set in E". In the usual man-
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ner we associate to every point p of U the plane of support to 5

which is perpendicular to Op. We now construct the polyhedron P'

whose face planes correspond to the points pi on U. (Not all the

"face planes" need pass through (n — l)-faces of P'.) The face angles

of P' are the same as those of P and hence the reflections of P' on its

face planes will yield c„ polyhedra Pi which have no interior points

in common. Since the closure S of 5 meets every Pj and since

con S<kZP' our proof is complete except for part 3, which follows from

the symmetry of the sphere.

We now give an estimate which shows c„ to be of exponential

growth.

Theorem.

log cn log cn
log (2 (3)1'2/3) g lim inf -^— ^ lim sup -?— fk log 2.

n n

Proof. Using the notation in the proof of the preceding theorem we

see that each Ui subtends a cone at 0 which intersects the surface

S oi U in a cap d with center pi and geodetic radius x/6. The hyper-

plane through the boundary of C< intersects U in a solid (n — 1)-

dimensional sphere S, whose radius is 1/2 and hence its (n — 1)-

measure is m(Si) =7r<n-1»22-("-1Vr((« + l)/2).

Now m(Ci)>m(Si) and, since the C, have no interior points in

common, cnm(Ci)fkm(S). Thus

/n+2\

m(S) \    2    )
cn fk-<-

m(d) /n+l\
V 7r(n-l)/22-(n-l)/r{'   -  \

or

log c„ < n log 2 + 0(log n).

Hence lim sup log c/ra^log 2.

On the other hand, if we consider the caps Ci with epicenter p{

and geodesic radius ir/3 then their union must cover all of S; since

any point p in 5 —U,- Ci would serve as point of tangency for an

additional unit sphere which does not meet any of the Ui. Thus

c„m(Ci) ^m(S) and hence

(*) cn ^ m(S)/m(Ci).

In order to estimate m(Ci) let Si be the solid (n — l)-sphere whose

boundary is that of Ci. Then SI has radius 31/2/2 and
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/3l/2 vn-1     ,      /n+l\

Now w(C7) =/s{ sec 7tf*m where 7 = $.piOp at a point pESt. Thus

sec 7^2 and miCt) S2miSt). Substituting in (*) we obtain

/n+l\

cn ^ miS)/2miSi) = -,

27r(n-l)/2(3l/2/2)(n-l)/2/r f  *-\

log Cn^n log (2-31'2/3) + O(log n).

Hence lim inf log c„/w^log 2-31/2/3.

This method of estimation can obviously be used to give exponen-

tial bounds for the maximal number of rays emanating from a point

in E" so that the angle between any two rays is no less than a.

Added January 23, 1959. Since this paper was written, B. Griin-

baum has communicated to us several related results (his paper will

appear in Pacific J. Math, under the title On a conjecture of H.

Hadwiger). His discussion is restricted to convex bodies. He obtains

the following results:

1. For a plane convex body K the maximal number if (A) of non-

overlapping contiguous translates is 6 when K is not a parallelogram

and 8 when it is.

2. In Euclidean «-space the MiK) lies between n2+n (attained for

the simplex) and 3" — l (attained for the cube). Griinbaum conjec-

tures that all even numbers between these limits and only these

numbers can occur as MiK).

This shows that the extremal property of the sphere, which we

proved in §3, no longer holds if we restrict attention to translates

rather than reflections and n is sufficiently large.

3. For a plane convex body K the minimal number miK) of trans-

lates which do not overlap K and surround it is 6 when K is not a

parallelogram and 4 when it is.

We proved that the upper bound holds for arbitrary compact Jor-

dan regions. It seems likely that the lower bound also holds for such

regions, although it does not hold in more general cases such as e.g.

regular compact connected sets. It is easy to see that in higher dimen-

sions miK) is not bounded from above for compact Jordan regions.

The lower bound presumably is 2«; attained for the cube. For the

unit sphere, S, the problem of determining miS) is that of determin-

ing the minimal number of spherical caps of geodetic radius 7r/3

which will cover 5.
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