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1. Introduction. A discrete valuation ring R is a commutative

integral domain with a single prime element q (to within a unit).

R becomes a topological ring by defining the neighborhoods of zero

to be the ideal (q) and all powers of (q). R is a complete discrete

valuation ring if it is complete with respect to this topology.

A non-Archimedean discrete valuation V can be defined on R by

letting V(0) = co and V(a) (a^O) be the highest power of q to divide

a. This valuation can be extended in the natural way to the quotient

field K of R. The nonzero elements of R are then the quantities in K

with non-negative valuation. Conversely, given a field K with non-

Archimedean discrete valuation, the elements in K with non-negative

valuation are the nonzero elements of a discrete valuation ring R,

the ring of integers of K. R is complete if and only if K is complete.

Again K is the quotient field of R.

It is largely in this context that complete discrete valuation rings

have been studied. It has been shown that if R is complete and has

the same characteristic as its residue class field F then R is isomorphic

to the ring of power series F[[x]]. Moreover, in the remaining case

(R has characteristic infinity and F has characteristic p),Ris uniquely

determined by F if R is unramifiied, i.e., if p is prime in R. Also there

exists an R for any given F. If V(p) =n, »> 1, R is said to be rami-

fied with ramification index n. For references see [2].

This paper is concerned with some aspects of the structure of rami-

fied complete discrete valuation rings. Throughout this paper, the

symbols R, R', Rn etc., will denote complete discrete valuation rings

of characteristic zero having the same residue field F of character-

istic p. The subscript on the ring symbol will designate the ramifica-

tion index or if there is none the ring is unramified.

Rings Rn have been studied extensively, largely as a part of alge-

braic number theory. Thus, as indicated below, a number of the re-

sults of this paper are known, however the methods are new and sim-

ple.
Theorem 1 provides a description of an arbitrary ring Rn in terms

of the unique unramified R and is closely related to the theorem [3,

p. 237, Theorem 11 ] which states that every Rn is an R(t) where t is

a root of an Eisenstein equation. This characterization is then used
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(Theorem 2) to establish the known fact [3, p. 236, Corollary] that

R is uniquely imbedded in R„ if F is perfect. The method of proof

hinges on the fact that a perfect field has no nontrivial derivations.

As a matter of fact it can be shown that if nfkp the various ways in

which R is imbedded in Rn are determined by certain sequences of

re — 1 derivations on F.

Theorems 3, 4, and 5 deal with the isomorphism question for rings

Rn. Corollary 3 and the fact illustrated by the example which follows

it are known, the former for normal extensions at any rate.

2. The characterization.

Theorem 1. Let Rn and R be complete discrete valuation rings of char-

acteristic zero whose isomorphic residue fields have characteristic p and

let R be unramified. Then Rn is isomorphic to R [ [x] ]/7 where R [ [x] ] is

the ring of power series in x over R and I is a principal ideal generated by

p — uxn where u is a unit in R [ [x] ] and n is the ramification index of Rn-

Conversely, any such ring R [[x] ]/7 is a complete discrete valuation ring

with ramification index n and residue field isomorphic to that of R.

Proof. That i?[[x]]/7 is a complete discrete valuation ring with

the stated properties follows from the following three observations

which will be discussed in turn. Lower case letters in the early part

of the alphabet will be used for elements in i?[[x]] which are also in

R.
(1) Each element v in i?[[x]] is congruent to an element of the

form ^2/biXi(v= ^biX') where each bi is a unit or zero. (Throughout

this paper congruence is with respect to 7 and 23 indicates a sum-

mation from 0 to oo.)

(2) If ^ZaiX* and 2j&,x* are congruent and are in the form (1)

then the indices of their first nonzero coefficients are equal.

(3) If Oo is a unit /_, aixi is a unit.

The construction of /Z&.x* in (1) can be described as follows: Let

v= ^aiX1. For each re we will construct 2Zai">x* —v such that aj"' = 6y

for all 7 < re. If ao = 0 or a unit let a}1' = a, for all i. If ao = dpm for some

rn >0 where d is a unit substitute d(uxn)m = a0 in v to obtain a new

series '^ta[1)xi = v in which a01)=Q = Jo-

Suppose that y^.ai/)xi = v has been obtained in which then, af) = 6»

for i<r. If arr) is a unit or zero let a(l+1) = alr) for all i. If a{? =dip"

where d\ is a unit and s>0, substitute di(uxn)s for arr) obtaining

J^aj x*s=i>. The set {v— ^af'x'jr forms a Cauchy sequence with

limit v— ^btx1 which is in 7 since 7 is closed.

Since the coefficient of x° in p — uxn is neither zero nor a unit it

follows that the first nonzero coefficient of each element in 7 is a
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nonunit. Thus, if E0^ and E&i** of (2) have different indices for

their first nonzero terms, their difference cannot be in /.

A standard argument establishes property (3). Properties (1) and

(2) together show that i?[[x]]// has no zero divisors and that every

v in i?[[x]] is congruent to an element of the form x'E^*' where c0

is a unit in R, Ec«#* nas the form (1) and s is invariant under con-

gruence. If s>0, x*22cixi cannot have an inverse since every element

of the form v(xs^2cixi) — l has leading coefficient —1 and, hence,

cannot be in /.

Thus i?[[x]]/7 is a discrete valuation ring with but one prime ele-

ment q, the coset of x. The facts that R [ [x] ]/I is complete, has rami-

fication index n, and residue field isomorphic to the residue field of R,

follow directly from the method of construction.

In establishing the rest of the theorem we observe that Rn con-

tains a subring R' isomorphic to R which, under the natural homo-

morphism of Rn onto K, also maps onto K [3, p. 236, Lemma 42]. It

will be convenient to identify R' with R.

Let q be prime in Rn. Each coset of the ideal [q\ in R contains an

element of R. Thus if a is in Rn there exists an a0 in R such that a — ao

is in [q\ or a = aa+amq. Again, there exists an ai in R such that

a(0)— ai is in [q] or a = a0+aiq+awq2. Proceeding inductively we see

that for each a in Rn, a= Eai2' where a* is in R for all i. Thus under

the mapping w where ir( E&tX*) = 22a<1i, R[[x\] maps homomorphi-

cally onto i?„. Let J be the kernel of tt. Since i?„ has ramification index

n, p = qn E°'2* where again the a, are in R and Ea»2* ls a unit. Thus

the ideal I generated by p — x" Ea;xi is in J" and RH is a homomorphic

image of R [ [x] ]/I. However, we have already observed that R [ [x] ]/I

is a complete discrete valuation ring. Hence, it has no proper homo-

morphic image which is an integral domain aside from its residue class

field. It follows that Rn is isomorphic to i?[[x]]//. Henceforth, we

will identify R with the isomorphic subring of i?[[x]]/J consisting

of all cosets of the form a+I where aER-

3. Applications. Let R' denote an unramified subring of Rn

= R[[x]]/{p — x"u\ which under the natural map £ of Rn onto F

(the symbol £ will be reserved henceforth for this map) also maps onto

F. Let v' be a unit in R'. We wish to show that, if F is perfect, there

is a unit v in RC\R' such that v — v'E{P\, where p is the coset of p,

and hence that R = R'.

Let ^a.x* E »'• There is an element ii in R' such that ao

+ E"=/ al1}x{Evi with the property

(4)  v'-viE{§}.
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(5) The first nonzero coefficient a[^ of 2?-i at1)xi, if any, is a

unit. Suppose that v23aB' + ^,1Ii af^x' and also fulfills conditions

(4) and (5) with first nonzero coefficient ar2) in 23?=i" afx*. Then,

since v{ — vl G {p}, it follows that a0'=a0, mod p, r = m, and ar2)

= am', mod £.

With each element aEF we associate the element J?i(a) determined

as follows. Choose v' in i?' which under £, of i?„ onto F, maps onto a.

With v' is associated an ao and an aj both uniquely determined,

mod p, by a. Let 171(a) =?(ai1)). The map ??i is a derivation on F, i.e.,

771(0:1+0:2) = 771(0:1)+771(0:2) and 771(0:10:2) =0:117(0:2) +a2?7(ai). But, if Pis

perfect, it has no nontrivial derivation hence a^ =0 for all units v' in

R. Assume that it has been shown that aj1)=0 for 0<s<k<n. The

map r}k(a) =£(ak)) is then a derivation from which it follows that

ak] =0 for all units v' in R'. Thus if F is perfect Vi=}a0 and, hence,

v{ ERr\R'.
We will say that the unramified complete discrete valuation ring

R' is imbedded in Rn if both R' ERn and, if, under the map £ of Rn

onto F, R' maps onto F. We have shown that

Theorem 2. R is uniquely imbedded in any complete discrete valua-

tion Rn with the same residue field F if F is perfect.

Let Rn=R[[x]]/{p-xnu} and Rr! =R'[[x]]/{p-x'nv} where

u= 23°>'xi and v' = ^al(x')i. We wish to investigate the manner in

which u and v must be related relative to an isomorphism ir oi R onto

R' in order that 7r can be extended to an isomorphism it of R„ onto

Rn'.

Lemma 3. Every isomorphism a- of Rn onto Rn such that ti-(R) =R' is

induced by an isomorphism a* of R [ [x] ] onto R' [ [x' ] ] with the proper-

ties that

(6) a*(R)=R',
(7) T*(p-xnu)=w'(p-(x')nv'),

and conversely, each such isomorphism fi* induces an isomorphism fi

of R„ onto R,! such that fi(R) =R'.

Proof. Given the isomorphism fi define fi* to agree with if on R.

Let fi*(x)=s'x' where fi[x+{p — xnu}]=s'x'+{p—(x')nv'}. Let

Tr*(2L,bixi)='Z2fi*(bi)(s'x')i. The map fi* is an isomorphism of

i?[[x]] onto i?'[[x']]. Now fi is necessarily continuous. It follows

that fi[p-xnu+{p-xnu}]=p-(s'x')n ^(aiK^T+^-tx')^}

= {p — (x')nv} from which it follows that fi* satisfies Condition (7)

as well as (6). The converse is immediate.
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Theorem 3. // the ramification index n is prime to p an isomorphism

w of R onto R' can be extended to an isomorphism if of Rn onto Ri if

and only if the equation £[ir(aa)]z" = £,(ao) has a solution z=y in F.

Proof. By Lemma 3 the problem of extending an isomorphism ir

to an isomorphism * is equivalent to the problem of extending ir to

an isomorphism if*. In order to do the latter it is necessary and

sufficient to find a unit s'= E&»' (x')1 ini?'[[x']] such that if if*(x) is

chosen to be the element s'y' there will exist a w' = Ec*'(x'){ in

i?'[[x']] such that condition (7) holds, or, such that,

P - (s'x'Y E tr(ai)(s'x'y = [p - (*')"(E ^(X'Y)] E c((x')\

Equating coefficients of (x')1Tor j = 0, 1, ■ ■ ■ we obtain the follow-

ing, where a subscript following a grouping symbol denotes the coeffi-

cient of the corresponding power of x' when the inclosed quantity is

written as a power series in x' over R'.

j = 0, Co'  = 1,

0 < j < n, cj = 0,

j = n, (bo)"Tr(ao) + a0' - pc/,

j = kn + i, k > 0, 0 < i < n,
(8) j , ,      - ,v   ' (k-l)n+i

E        [(*')"]«[£ 7r(clr)(sV)'] <*_!)„+<_,
!=0

(Jb— l)n+»

=   pCkn+i —     2-1      at c (k-l)n+i-t-

Given the condition of the theorem one can find elements cj and

bo such that (8) holds for j^n. The term with highest subscript

among the bj occurring in (8) for j = kn+i, kT^O, is b[k-\)n+i with

coefficient n(bo )"~17r(ao) which is a unit. Thus whatever the choice

of c'kn+t the expression has a solution b[k-i)n+i which establishes the

sufficiency of the given condition. The above discussion also implies

the necessity of the given condition.

It follows from Theorem 3 that i?[[x]]/{/> — x"u\ is isomorphic to

R[[x]]/\pa-x"\ where u~1=a+ E"=i a-iX\ Now R[[x]]/\pa-x")

is isomorphic to R[x]/{pa — x"}. This leads us to

Corollary 3. The ring R[x] obtained by extending R by a primitive

nth root of a prime element in R is a ring Rn. If n is prime to p every

ring Rn is of this type.

The following example will illustrate the known fact that, in gen-
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eral, if re is not prime to p rings Rn exist which are not simple exten-

sions of R by primitive reth roots of prime elements of R.

Let F be perfect and let n = mp. The ring

Rn, = R[[x]]/{p - (a0 + aix)x"}

where ai is a unit cannot be isomorphic to a ring

Rn2 = *[[*]]/{# - box"}

ior, in the first place, R is uniquely imbedded in them hence if they

are isomorphic under a map 7r, say of i?„2 onto Rni, then 7r must map

R onto itself but it is readily seen that condition (8) cannot be ful-

filled for j = re + l.

We will say that two nonzero elements a and (3 in Fare re congruent

over R (o:~/3) if there is an automorphism ir on R such that with

respect to the automorphism 7r* induced on F under the map £ of

R onto F the equation ir*(a)zn=fi has a solution z = y in F. This is

an equivalence relation with the following two properties

(9) a~ /3=$ Tri(a) ~ /?

for any automorphism 7r* on F induced as above by an automorphism

wi on R.

a ~ @ => a(ai)n ~ /8(/8i)n

for any nonzero o:i and /3i in K.

By choosing R = R' in Theorem 3 we are led to

Theorem 4. If F is perfect and re is prime to p there are as many dis-

tinct Rn as there are equivalence classes in F with respect to the above

equivalence relation. Moreover, if F = P, the field of order p, there are

as many distinct Rn as cosets of the subgroup of nth powers in the multi-

plicative group of nonzero elements in F.

The last sentence in Theorem 4 follows from the fact that in this

case the only automorphism on F is the identity.

It is known that every automorphism on F is induced by an auto-

morphism on R if both K, the quotient field of R, is normal over its

subfield of p-ad\e numbers and F is separable over P[l, Chapter 4,

Theorem 8]. Thus, in this case we have

Corollary 4. If F is perfect and n is prime to p there are as many

distinct Rn as there are equivalence classes in F with respect to the fol-

lowing equivalence relation—a is equivalent to /3 (a »/3) if and only if

there exists an automorphism w on F such that the equation Tr(a)zn=l3

has a solution in F.
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Let R and R' be contained in Rn and Rn respectively. Then p = uq"

in Rn for any given prime q where u is a unit and p = u'(q')n in Ri.

Let a and a' be units in R and i?' such that £(a) = £(w) and f (a') =£(w').

We shall conclude with the following theorem.

Theorem 5. If F is perfect then Rn is isomorphic to Rn' if and only

if under a given isomorphism ir of R onto R' £ [7r(a) ]<~£(a').

Proof. Let if denote an isomorphism of Rn onto Ri. Then by

Theorem 2 if(R) =R'. Nowi?„ and Rn are isomorphic respectively to

R[[x]]/\p-xna) and R'[[x']]/{p-(x')na'} under maps r\ and v'

which are the identity on R and R' respectively and map q and q'

onto x and y. The map rj'ifri-1 is an isomorphism of -R[[x ]]/{/> — x"a]

onto R' [[y]]/{p- (x')"a'}. It follows from Theorem 3 that i^'ifij-'fa)

~£(a'). But »;'*77-l(a) =7f(a), hence, £if(a)~i-(a').

Now, let 7Ti be an arbitrary isomorphism of R onto R'. The map

7T2 given by #(&)—>7Ti(&) is an automorphism on R' and induces the

automorphism f2 on F. Thus, by property 9, £(a')~#2£x(a) =£7r2if(a)

= £7T:(a). This establishes the necessity of the condition.

To show that the condition is sufficient let 7r be an isomorphism of

R onto R' such that ipr(a)=l-(a'). Again Rn and Rn' are isomorphic

respectively to R[[x]]/{p-x"a] and R'[[x']]/[p-(x')na'\ under

maps n and »; which map q and c/' onto x and y and which are the

identity on R and R' respectively. The condition of Theorem 3 is

fulfilled and R [ [x] ]/ {p - x"a} is isomorphic to R'[[x']]/{p- (x')na'}.

Again, assuming the conditions of Corollary A on K and F we have

Corollary 5. If F is perfect then Rn is isomorphic to Rn' if and only

if under a given isomorphism tr of R onto R' £[ir(a) ] «£(a').
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