
HYPERSPACES OF THE INVERSE LIMIT SPACE

JACK SEGAL1

Introduction. Throughout the following X will denote a metric

continuum, 2X the set of all nonempty closed subsets of X and C(X)

the set of all nonempty subcontinua of X. It is the purpose of this

paper to answer questions raised in [4] about the dimension and

homological properties of C(X) when X is non-Peanian. In §1 C(X)

is shown to be acyclic in all dimensions and in §2 sufficient conditions

for the finite dimensionality of C(X) are obtained.

Notation. If (Ci, • • • , [/„) is a collection of subsets of a topological

space X, then (Uu ■ ■ ■ , Un) denotes {EE2x\EE\f^i U{ and

Er\U,A0 for each i}. If X is a topological space, then the finite

topology on 2X is the one generated by collections of the form

(Ui, ■ ■ ■ , Un) with Ui, • • • , U„ open subsets of X.

C(X) denotes the space of all nonempty subcontinua of X with the

topology inherited from 2X with the finite topology. If A = lim(X,-,/j, /)

where A,- is a metric continuum, /,• is continuous and / is the set of

natural numbers, then A is a metric continuum. [See [l ] for an ex-

planation of this notation used in the description of the inverse limit

space.] Now C(Xi) is defined and we define//: C(Xi+i)-^C(Xi) by

// (E) = (f* | C(Xi+i)) (E) =fi(E), where ft: 2*<+>-»2x< is continuous by
[6, Theorem 5.10], so that // is continuous. Let CX(X)

= lim (C(X), fi, I), where CX(X) is given the relative topology

inherited from the product of the C(A;)'s with the product topology.

Let 7Tn: X—>Xn be the projection map on X and ir/, : Cx(X)-^C(Xn)

be the projection map on CX(X).

1. Homology of C(X). First we show that C(X) and CX(X) are

homeomorphic.

Lemma 1.1. {(LA, • • • , Uk)\ Ui, ■ ■ ■ , Uk open in X} forms a basis

for C(X).

Proof. [6, Theorem 2.1].

Lemma 1.2. {■k'~1((Ui, • • ■ , Uk))\nEI and (Uu ■ ■ • , Uk) open

in C(Xn)} forms a basis for CX(X).

Proof, [l, Lemma 3.12, p. 218].
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Lemma 1.3. {(^'(fA), ■ • • , ir~1(Uj))} forms a basis for C(X).

Proof. If V is a basic open set in C(X), then V=(V1, • ■ ■ , Vk)

= {G\GEC(X),GEU*=i F'and GC\Vi9*0 for t= 1, • • • ,k}.Lete0
be the Lebesgue number of (V1, ■ ■ ■ , Vk). Let e,->0 for *'= 1, • • • , k

be such that there exist x*£ V{ such that 5,,.(a;') C V1 where Sei(xl) is

a spherical open set with center xi and radius e<. Let

e = min (e,-|i = 0, 1, • • • , k). Now there exist n(e) and r>(e) such that

if A open subset of Xn and diam (A) <r), then diam ^'(^4) <e. Cover

Gn=TTn(G) with open sets of diameter less than rx, since Gn is compact

we need only a finite number of these open sets to cover G„. Choose a

finite irreducible set of such open sets and call them T\, • • • , Tm.

We have G„CU7=i Tyand Tjf\Gn9*0 forj= 1, • • ■ , mand diam (TA

<r,.

So GCUy™! *?{T,) and Gr\-K-x(Tf)9*0 for j = l, • • • , m and

diam ^'(Ty) <e. Therefore tt_1(Tj) is contained in some V1. Let

r*' = U {ir^1(^y)|7rn1(^'j')C F^}. Since for each i we have xin = wn(xi)E Tj

and diam (Ty) <?7 we have xiETr~1(Tj) and diam ^(Tf) <eSet.

Therefore there exists a ir~1iTj)EVi for each i, so that T{9*0.

Therefore T* is a nonnull open set of X of the form

^({Urylir^rOCF*}) where \JTj is open in Xn.
Consider (T1, ■ ■ • , 7"*) it is of the desired form. We must show

GE(T\ ■ ■ ■ ,Tk) and Fis the union of such (T\ • • • , Tk)'s.

First we show GE(T\ ■ ■ ■ , Tk). GQiiT-i r~l(TA and Gnnr^iTj)

9*0 for each j. Since U™i ir»1(ry)=Uf-i T* we have GCUf-i T* and
GC\Ti9*0 for each *. Therefore GG<r», • • • , Tk).

Second we show V=\j{{T1, ■ ■ ■ , T>)}. Since GEV implies G

E\j{(TK • • • , r*>} we have VEU{(T1, • • • , 7"*)}.

If^GU{(r1, • • • ,T')} then A E(T\ • ■ • , T>) andsoi4CUJ-i T>
and ^4r^rp^jZf for each p. Therefore since Up=1 PCUt-i F* we have

^4CUf=1F' and An(\j{ir-\Tm)})*0 where r^rjCl" for
i=l, ■ ■ ■ , k. Therefore A E^l-i Vi and AC\Vi9*0 for i=l, ■ ■ ■ ,k.
Therefore A E V and (j{(T\ ■ ■ ■ ,  T')} C V. Therefore

V=U{(T1,---,T>-)}.

Theorem 1.1. C(X) and CX(X) are homeomorphic.

Proof. UAECX(X) then A = iAt, A2, As, • • • ) where AiEdX/).
If DECiX) then D={(xi, x2, ■ • ■ )\xiEDi = in(D)}. We define

h: C„(X)-*C(X) by h(A) = {(xu x2, ■ ■ -)\xiEAi}. If h(A) = h(B)
then {(xi, x2, ■ ■ ■ )\x{EAi} = {(yu y2, ■ ■ ■ )|y,-G5,-}. Now for any

XiEAi, there is an (xi, x2, ■ ■ ■ , *,-, • • • ) equal to a (yi, • • • , y,-, • • •)

and hence x< = 3'i so that XiEBi. Therefore A,EBi and in the same
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way BiEAi so that Ai = Bi for each i. Therefore A =B and h is 1-1.

If BEC(X) then B={(xu x2, ■ ■ ■ )\xiEBi} =h((Bu B2, ■ ■ ■ )) so
that h is onto.

By Lemma 1.3 (Tr~x(Ui), ■ ■ ■ , Tr~1(Uk)) is a basic open set so to

show h is continuous we will show that ^((^'(lA), • • • , Trn~1(Uk)))

is an open set in CX(X).

h-^TnKUi),   ■   •   •  , TnKUk)))

= {AE CX(X) | h(A) E (*»l(Ui), ■■■, TT^(Uk))}

= (a E Coo(A) I h(A) E U  XnKU) and h(A) C\ xn-KUt) A #j

= <A E CX(X) | Xnh(A) EU Ui and xnh(A) t~\ Ui A 0\\

= {AE Ca(X) | Tn({(xh • ■ • ) I ** € Ai}) E (Ui, ■ ■ ■ , Uk)}

=   {A   eCm(X)\   {xn\xnEAn}   E  (Ui,   ■   ■   ■  ,   Uk)}

= {A ECX(X)\ AnE(Ui, ■ ■ ■ , Uk)}

= {AE C„(X) | A E xf1 ((Uu ■ ■ ■ , Uk))}

= rr/-1((Ui, • • • , Uk)) open in C,(X).

Property 3.2. For e>0, there exists d(e)>0 such that if a, bEX,

dist(o, b) <d(e) and aEAEC(X), then there exists B such that

bEBEC(X) with the Hausdorff distance from A to B less than e.

Theorem 1.2. If X is a metric continuum then C(X) is acyclic in all

dimensions.

Proof. By [2, p. 183] A = lim (A,-,/,-, /) where Xt is a polyhedron,

ft is continuous and onto, / is the set of natural numbers. If Y has

property 3.2 by [4, Theorem 3.4] the Vietoris groups Fn(C(F))=0.

Now a polyhedron P has property 3.2 so Vn(C(P))=0. By [5, Theo-

rem 26.1] for a compact metric space Y, Vn(Y)=Hn(Y) where the

Vietoris groups V„ and the Cech groups Hn are taken over a discrete

group. So using the above, Theorem 1.1 and the continuity of Cech

theory we have the following: Vn(C(X))=Hn(C(X))=Hn(Cx(X))

= Hn (lim (C(Xt),fi, I))-lira (Hn(C(Xt)),f», 7)=lim (Ot,fm, /) =0
where O, = 0.

2. Dimension of C(X). Kelley leaves as an open question the

dimension of C(X) when X is not locally connected. If A is a metric

continuum of dimension n, then A = lim (A,-, /,-, /) where X, is a

polyhedron of dimension n. If in addition dim C(Xt) fk k for all i we

shall say X has property k (with respect to lim (A<, /,-, /)).
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Theorem 2.1. // dim (X) = 1 and X has property k, then dim C(X)
<   oo.

Proof. By [4, Theorem 5.4] (if X is Peanian then dim C(X) < co

if and only if A is a linear graph) we have since dim C(A,) fk k for all

i that k < =o. Therefore dim C(X) = dim CX(X) ^ k < oo.

Example 2.1. Let X be the dyadic solenoid, then since A

= lim (Xi, ft, I) where X{ = S1 and /,-(z) = z2, we have dim C(Xi) = 2

for each i, hence the dim C(X) =dim C0O(A) fk2.

Example 2.2. To see the need of imposing property k in Theorem

2.1 consider the following: let X,- be the union of 2' straight line seg-

ments Al, ■ • • , Atf-i where A) (j = 0, ■ ■ ■ , 2*—1) is from (0, 0) to

(1, jir/2i~1) in the plane (polar coordinates). Let /,•: Xi+i—>Xt be

the identity map on A10+l, A2+1, A\+1, ■ ■ ■ , A\i-i where fi(A)+1) =A)/2

for j = 0, 2, ■ ■ ■ , 2i~1, and fi maps A'+1 linearly onto -4(j-u/2 keeping

the origin fixed for j = l, 3, • • • , 2' —1. Then A is a Cantor set of

arcs meeting at a single point (x) = x where xt= (0, 0) for each i. Now

the dim C(Xi)=2+^l0tierxii2 (order xt — 2) =2 + (order £,—2) =

order Xi = 2', so that X fails to have property k. Further dim C(X) is

infinite since the order x = oo.
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