HYPERSPACES OF THE INVERSE LIMIT SPACE

JACK SEGAL¹

Introduction. Throughout the following X will denote a metric continuum, $2^{\mathbf{x}}$ the set of all nonempty closed subsets of X and C(X) the set of all nonempty subcontinua of X. It is the purpose of this paper to answer questions raised in [4] about the dimension and homological properties of C(X) when X is non-Peanian. In §1 C(X) is shown to be acyclic in all dimensions and in §2 sufficient conditions for the finite dimensionality of C(X) are obtained.

Notation. If (U_1, \dots, U_n) is a collection of subsets of a topological space X, then $\langle U_1, \dots, U_n \rangle$ denotes $\{E \in 2^X | E \subset \bigcup_{i=1}^n U_i \text{ and } E \cap U_i \neq \emptyset$ for each $i\}$. If X is a topological space, then the finite topology on 2^X is the one generated by collections of the form $\langle U_1, \dots, U_n \rangle$ with U_1, \dots, U_n open subsets of X.

C(X) denotes the space of all nonempty subcontinua of X with the topology inherited from $2^{\mathbf{x}}$ with the finite topology. If $X = \lim(X_i, f_i, I)$ where X_i is a metric continuum, f_i is continuous and I is the set of natural numbers, then X is a metric continuum. [See [1] for an explanation of this notation used in the description of the inverse limit space.] Now $C(X_i)$ is defined and we define $f'_i : C(X_{i+1}) \to C(X_i)$ by $f'_i(E) = (f^*_i | C(X_{i+1}))(E) = f_i(E)$, where $f^*_i : 2^{\mathbf{x}_{i+1}} \to 2^{\mathbf{x}_i}$ is continuous by [6, Theorem 5.10], so that f'_i is continuous. Let $C_{\infty}(X)$ $= \lim (C(X_i), f'_i, I)$, where $C_{\infty}(X)$ is given the relative topology inherited from the product of the $C(X_i)$'s with the product topology. Let $\pi_n : X \to X_n$ be the projection map on X and $\pi'_n : C_{\infty}(X) \to C(X_n)$ be the projection map on $C_{\infty}(X)$.

1. Homology of C(X). First we show that C(X) and $C_{\infty}(X)$ are homeomorphic.

LEMMA 1.1. $\{ \langle U_1, \cdots, U_k \rangle | U_1, \cdots, U_k \text{ open in } X \}$ forms a basis for C(X).

PROOF. [6, Theorem 2.1].

LEMMA 1.2. $\left\{\pi_n^{\prime-1}(\langle U_1, \cdots, U_k \rangle) \mid n \in I \text{ and } \langle U_1, \cdots, U_k \rangle \text{ open in } C(X_n) \right\}$ forms a basis for $C_{\infty}(X)$.

PROOF. [1, Lemma 3.12, p. 218].

Presented to the Society, April 24, 1959; received by the editors December 5, 1958 and, in revised form, January 23, 1959.

¹ Supported in part by the University of Georgia Alumni Foundation and the Research Corporation.

LEMMA 1.3. $\{\langle \pi_n^{-1}(U_1), \cdots, \pi_n^{-1}(U_j) \rangle\}$ forms a basis for C(X).

PROOF. If V is a basic open set in C(X), then $V = \langle V^1, \dots, V^k \rangle$ = $\{G \mid G \in C(X), G \subset \bigcup_{i=1}^k V^i \text{ and } G \cap V^i \neq \emptyset \text{ for } i = 1, \dots, k\}$. Let e_0 be the Lebesgue number of (V^1, \dots, V^k) . Let $e_i > 0$ for $i = 1, \dots, k$ be such that there exist $x^i \in V^i$ such that $S_{e_i}(x^i) \subset V^i$ where $S_{e_i}(x^i)$ is a spherical open set with center x^i and radius e_i . Let $e = \min(e_i \mid i = 0, 1, \dots, k)$. Now there exist n(e) and $\eta(e)$ such that if A open subset of X_n and diam $(A) < \eta$, then diam $\pi_n^{-1}(A) < e$. Cover $G_n = \pi_n(G)$ with open sets of diameter less than η , since G_n is compact we need only a finite number of these open sets to cover G_n . Choose a finite irreducible set of such open sets and call them T_1, \dots, T_m . We have $G_n \subset \bigcup_{j=1}^m T_j$ and $T_j \cap G_n \neq \emptyset$ for $j = 1, \dots, m$ and diam $(T_j) < \eta$.

So $G \subset \bigcup_{j=1}^{m} \pi_n^{-1}(T_j)$ and $G \cap \pi_n^{-1}(T_j) \neq \emptyset$ for $j = 1, \dots, m$ and diam $\pi_n^{-1}(T_j) < e$. Therefore $\pi_n^{-1}(T_j)$ is contained in some V^i . Let $T^i = \bigcup \left\{ \pi_n^{-1}(T_j) \middle| \pi_n^{-1}(T_j) \subset V^i \right\}$. Since for each *i* we have $x_n^i = \pi_n(x^i) \subset T_j$ and diam $(T_j) < \eta$ we have $x^i \subset \pi_n^{-1}(T_j)$ and diam $\pi_n^{-1}(T_j) < e \leq e_i$. Therefore there exists a $\pi_n^{-1}(T_j) \subset V^i$ for each *i*, so that $T^i \neq \emptyset$. Therefore T^i is a nonnull open set of X of the form $\pi_n^{-1}(\{\bigcup T_j \middle| \pi_n^{-1}(T_j) \subset V^i\})$ where $\bigcup T_j$ is open in X_n .

Consider $\langle T^1, \cdots, T^k \rangle$ it is of the desired form. We must show $G \in \langle T^1, \cdots, T^k \rangle$ and V is the union of such $\langle T^1, \cdots, T^k \rangle$'s.

First we show $G \in \langle T^1, \dots, T^k \rangle$. $G \subset \bigcup_{j=1}^m \pi_n^{-1}(T_j)$ and $G \cap \pi_n^{-1}(T_j) \neq \emptyset$ for each *j*. Since $\bigcup_{j=1}^m \pi_n^{-1}(T_j) = \bigcup_{i=1}^k T^i$ we have $G \subset \bigcup_{i=1}^k T^i$ and $G \cap T^i \neq \emptyset$ for each *i*. Therefore $G \in \langle T^1, \dots, T^k \rangle$.

Second we show $V = \bigcup \{ \langle T^1, \cdots, T^j \rangle \}$. Since $G \in V$ implies $G \in \bigcup \{ \langle T^1, \cdots, T^k \rangle \}$ we have $V \subset \bigcup \{ \langle T^1, \cdots, T^k \rangle \}$.

If $A \in \bigcup \{ \langle T^1, \cdots, T^j \rangle \}$ then $A \in \langle T^1, \cdots, T^j \rangle$ and so $A \subset \bigcup_{p=1}^j T^p$ and $A \cap T^p \neq \emptyset$ for each p. Therefore since $\bigcup_{p=1}^j T^p \subset \bigcup_{i=1}^k V^i$ we have $A \subset \bigcup_{i=1}^k V^i$ and $A \cap (\bigcup \{\pi_n^{-1}(T_m)\}) \neq \emptyset$ where $\pi_n^{-1}(T_m) \subset V^i$ for $i=1, \cdots, k$. Therefore $A \subset \bigcup_{i=1}^k V^i$ and $A \cap V^i \neq \emptyset$ for $i=1, \cdots, k$. Therefore $A \in V$ and $\bigcup \{ \langle T^1, \cdots, T^j \rangle \} \subset V$. Therefore

$$V = \bigcup \{ \langle T^1, \cdots, T^j \rangle \}.$$

THEOREM 1.1. C(X) and $C_{\infty}(X)$ are homeomorphic.

PROOF. If $A \in C_{\infty}(X)$ then $A = (A_1, A_2, A_3, \cdots)$ where $A_i \in C(X_i)$. If $D \in C(X)$ then $D = \{(x_1, x_2, \cdots) | x_i \in D_i = \pi_i(D)\}$. We define $h: C_{\infty}(X) \to C(X)$ by $h(A) = \{(x_1, x_2, \cdots) | x_i \in A_i\}$. If h(A) = h(B)then $\{(x_1, x_2, \cdots) | x_i \in A_i\} = \{(y_1, y_2, \cdots) | y_i \in B_i\}$. Now for any $x_i \in A_i$, there is an $(x_1, x_2, \cdots, x_i, \cdots)$ equal to a $(y_1, \cdots, y_i, \cdots)$ and hence $x_i = y_i$ so that $x_i \in B_i$. Therefore $A_i \subset B_i$ and in the same way $B_i \subset A_i$ so that $A_i = B_i$ for each *i*. Therefore A = B and *h* is 1-1. If $B \in C(X)$ then $B = \{(x_1, x_2, \cdots) | x_i \in B_i\} = h((B_1, B_2, \cdots))$ so that *h* is onto.

By Lemma 1.3 $\langle \pi_n^{-1}(U_1), \cdots, \pi_n^{-1}(U_k) \rangle$ is a basic open set so to show *h* is continuous we will show that $h^{-1}(\langle \pi_n^{-1}(U_1), \cdots, \pi_n^{-1}(U_k) \rangle)$ is an open set in $C_{\infty}(X)$.

$$h^{-1}(\langle \pi_n^{-1}(U_1), \cdots, \pi_n^{-1}(U_k) \rangle)$$

$$= \left\{ A \in C_{\infty}(X) \mid h(A) \in \langle \pi_n^{-1}(U_1), \cdots, \pi_n^{-1}(U_k) \rangle \right\}$$

$$= \left\{ A \in C_{\infty}(X) \mid h(A) \subset \bigcup_{i=1}^k \pi_n^{-1}(U_i) \text{ and } h(A) \cap \pi_n^{-1}(U_i) \neq \emptyset \right\}$$

$$= \left\{ A \in C_{\infty}(X) \mid \pi_n h(A) \subset \bigcup_{i=1}^k U_i \text{ and } \pi_n h(A) \cap U_i \neq \emptyset \right\}$$

$$= \left\{ A \in C_{\infty}(X) \mid \pi_n(\{(x_1, \cdots) \mid x_i \in A_i\}) \in \langle U_1, \cdots, U_k \rangle \}$$

$$= \left\{ A \in C_{\infty}(X) \mid \{x_n \mid x_n \in A_n\} \in \langle U_1, \cdots, U_k \rangle \}$$

$$= \left\{ A \in C_{\infty}(X) \mid A_n \in \langle U_1, \cdots, U_k \rangle \right\}$$

$$= \left\{ A \in C_{\infty}(X) \mid A \in \pi_n^{\prime-1}(\langle U_1, \cdots, U_k \rangle) \right\}$$

$$= \pi_n^{\prime-1}(\langle U_1, \cdots, U_k \rangle) \text{ open in } C_{\infty}(X).$$

PROPERTY 3.2. For e > 0, there exists d(e) > 0 such that if $a, b \in X$, dist(a, b) < d(e) and $a \in A \in C(X)$, then there exists B such that $b \in B \in C(X)$ with the Hausdorff distance from A to B less than e.

THEOREM 1.2. If X is a metric continuum then C(X) is acyclic in all dimensions.

PROOF. By [2, p. 183] $X = \lim (X_i, f_i, I)$ where X_i is a polyhedron, f_i is continuous and onto, I is the set of natural numbers. If Y has property 3.2 by [4, Theorem 3.4] the Vietoris groups $V_n(C(Y)) = 0$. Now a polyhedron P has property 3.2 so $V_n(C(P)) = 0$. By [5, Theorem 26.1] for a compact metric space Y, $V_n(Y) = H_n(Y)$ where the Vietoris groups V_n and the Čech groups H_n are taken over a discrete group. So using the above, Theorem 1.1 and the continuity of Čech theory we have the following: $V_n(C(X)) = H_n(C(X)) = H_n(C_{\infty}(X))$ $= H_n (\lim (C(X_i), f'_i, I)) = \lim (H_n(C(X_i)), f'_{i*}, I) = \lim (O_i, f'_{i*}, I) = 0$ where $O_i = 0$.

2. Dimension of C(X). Kelley leaves as an open question the dimension of C(X) when X is not locally connected. If X is a metric continuum of dimension *n*, then $X = \lim (X_i, f_i, I)$ where X_i is a polyhedron of dimension *n*. If in addition dim $C(X_i) \leq k$ for all *i* we shall say X has property k (with respect to $\lim (X_i, f_i, I)$).

THEOREM 2.1. If dim (X) = 1 and X has property k, then dim $C(X) < \infty$.

PROOF. By [4, Theorem 5.4] (if X is Peanian then dim $C(X) < \infty$ if and only if X is a linear graph) we have since dim $C(X_i) \leq k$ for all *i* that $k < \infty$. Therefore dim $C(X) = \dim C_{\infty}(X) \leq k < \infty$.

EXAMPLE 2.1. Let X be the dyadic solenoid, then since X = $\lim (X_i, f_i, I)$ where $X_i = S^1$ and $f_i(z) = z^2$, we have dim $C(X_i) = 2$ for each *i*, hence the dim $C(X) = \dim C_{\infty}(X) \leq 2$.

EXAMPLE 2.2. To see the need of imposing property k in Theorem 2.1 consider the following: let X_i be the union of 2^i straight line segments $A_{0}^i, \dots, A_{2^{i-1}}^i$ where $A_j^i (j=0, \dots, 2^{i-1})$ is from (0, 0) to $(1, j\pi/2^{i-1})$ in the plane (polar coordinates). Let $f_i: X_{i+1} \rightarrow X_i$ be the identity map on $A_0^{i+1}, A_2^{i+1}, A_4^{i+1}, \dots, A_{2^{i-1}}^i$ where $f_i(A_j^{i+1}) = A_{j/2}^i$ for $j=0, 2, \dots, 2^{i-1}$, and f_i maps A_j^{i+1} linearly onto $A_{(j-1)/2}^i$ keeping the origin fixed for $j=1, 3, \dots, 2^{i-1}$. Then X is a Cantor set of arcs meeting at a single point $(\bar{x}_i) = \bar{x}$ where $\bar{x}_i = (0, 0)$ for each i. Now the dim $C(X_i) = 2 + \sum_{\text{order} x_i \geq 2}^{\text{order} x_i - 2} = 2 + (\text{order } \bar{x}_i - 2) = 2 + (\text{order } \bar{x}_i - 2) = 0$ order $\bar{x}_i = 2^i$, so that X fails to have property k. Further dim C(X) is infinite since the order $\bar{x} = \infty$.

BIBLIOGRAPHY

1. C. E. Capel, Inverse limit spaces, Duke Math. J. vol. 21 (1954) pp. 233-246.

2. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University Press, 1952.

3. H. Freudenthal, Entwicklungen von Räumen und ihren Gruppen, Compositio Math. vol. 4 (1937) pp. 145-234.

4. J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. vol. 52 (1942) pp. 22-36.

5. S. Lefschetz, Algebraic topology, American Mathematical Society Colloquium Publications, vol. 27, 1942.

6. E. Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. vol. 71 (1951) pp. 152-182.

THE UNIVERSITY OF GEORGIA