
THE DIOPHANTINE EQUATION 2"+2-7=x2 AND
RELATED PROBLEMS

TH. SKOLEM, S. CHOWLA AND D. J. LEWIS

1. Ramanujan [l, p. 327, Problem 464] observed that the equation

2>w-2_ 7 _x2 has rational integral solutions for n and x when n = l, 2, 3,

5, and 13; and he conjectured that these were the only solutions.

K. J. San j ana and T. P. Trivedi [2] discussed but did not resolve the

conjecture. By means of the Thue-Seigel-Roth Theorem it is possible

to show that the above equation has only a finite number of solutions,

but it is not possible to determine the exact number of solutions.

Here we use the £-adic method of Skolem [3 ] to obtain the conjecture.

The treatment of the problem in §2 is essentially that which was given

by Skolem in the University of Notre Dame Number Theory Seminar

in the Spring of 1958.

We also show that the sequence of integers satisfying the recursive

relation

ao = oi = 1,        an = an-i — 2an-t if » > 1

is such that (i) a2n-i = l exactly when the equation 2n+2 — 7=x2 has a

solution; and (ii) an integer appears in the sequence an at most three

times.

2. Suppose n and x are rational integers such that 2n+2 — 7=xi.

Obviously n ^ 1 and x is an odd integer prime to 7. Write

n_x2 + 7 _/x + (-7yt2\/x - (-7yi2\

The numbers (x + ( — 7)1/2)/2 and (x — ( — 7) I/2)/2 are relatively prime

integers in the field Q(( — 7)1'2). Here Q will be used to denote the

field of rational numbers. In the field Q(( — 7)1/2), 2 = rr', where

r = (1 + (-7)1/2)/2 and r' = (1 - (-7)"2)/2 are conjugate, but not asso-

ciate primes. Since 2n = rn-r'" = ((x + (-7)1'2)/2)((x-(-7)1i2)/2), it

necessarily follows that rn= (x+ ( — 7)1,2)/2.

Conversely, if n and x are rational integers such that rn

= (x±( — 7)1/2)/2 then 2"+2 — 7=x2 has a solution. Hence the number

of solutions of 2n+2 — 7=x2 is precisely the same as the number of

rational integers n ior which r" = (x±( — 7)I/2)/2.

We look at the first few powers of r.
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r = — (1 + (~7)"2), r» - y (-3 + (-7)1'2),

r» = y (-5 - (-7)1/2), r* = — (1 - 3(-7)*'2),

f8 =      (11 _ (-7yn), r« = 1 (9 + 5(-7)^),

r> - y(-13+ 7(-7)^), r« = y (-31 - 3C-7)1'2), • • •

r» = y(-181-(-7)'/*), ••• .

Thus we obtain those values of n for which there is a solution and

which had previousely been obtained by Ramanujan.

Observe that

,3» = (l - r'i-lY'2)" = 1 - Cn,iir'i-7y2) + cn.2ir'i-iyi2)2

= Ain) + Bin)i-7yi2,

where

7 3-7 72 72 7s
/!(»)   =   1-Cn,l H-— C„,2-C„,3 H-Cn,i + "- C"n,5

2 2 2 2 2

9.73
-"—  (C",6)   -   -   '  ,

and

1 7 5-7 3-72 11-72
jB(n)   =-C„,l H-C„,2-C„,3 -\-C„,4-C„,5

2 2 2 2 2

5-73
+ - Cn,, +   •   •   •   .

2

We seek rational integers n such that B(n)= ± 1/2. This can occur,

only if B(n) = + 1/2 in each of the £-adic fields. For each prime p, the

polynomials C„,, assume £-adic integral values as n ranges over the

integers. Furthermore, if s> 1, for every rational integer n, the terms

(7[n'*'/(n — 1))C„,, lie in the prime ideal of the 7-adic numbers. Hence
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1 /     1        7 /n\      5-7 /n(n - 2)\ \

= (n - l)U(n)

where for every rational integer n, U(n) is a unit in the 7-adic num-

bers. Thus B(n) = —1/2 in the 7-adic numbers, and hence in Q, only

if « = 1. We shall later show that B(n) never assumes the value 1/2.

Now

,3»+i = r(A(n) + B(n)(-7yi2)

= (y A(n) - (7/2)5(»)) + (-7)1/2(y A(n) + y B(n)J

= Ai(n) + Bi(n)i-7yi\

and

Bi(n) =-2C,!,1+7C„,2-3-7C„,3H-72C?M-72Cn,5- 78Cn.6 + .

Then

1/7 3-7 \
Bi(n) =y = n^_2 + y(»-l)-— (W - i)(„ _ 2) + ••• j

= nVin),

where, for every rational integer n, V(n) is a 7-adic unit. Hence

Bi(n) = 1/2 only if n = 0. Also

1 /        7(12« + 2»2 + 7n3)           73 \
Biin) +—=(«- 4) ( 1 +- +-C„,6 + • ■ •  )

2 \ 4 n — 4 /

= (n- 4)W(n),

where W(n) is always a 7-adic unit; hence B\(n) = —1/2 only if n = 4.

Finally

r3n+2   =   Ai(n)  _|__Bj(B)(_7)l/J>

where

1
A(«) =-Cnil + 2-7Cn,3-2-72C„,4-2-72Cn,5-6-73CB,6 +

Now
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1 / 7
B2(n)-= n I -1 H-(n - l)(n - 2)

--(«- l)(n - 2)(n - 3) + ■ ■ •)

and hence B2(n) = 1/2 only if n = 0. Also

1 / 7
B2(n) H-=(»- 1)(-H-n(n - 2)

72 V
-n(n — 2)(n — 3) + ■ ■ ■  )

12 /

and hence B2(n) = —1/2 only if n = 1.

Now suppose that there is an n such that B(n) = 1/2. Let £ = rn,

then £3-S'3 = (-7)1/2=(£-S')(£2+&'+£'2)- Since £ and £' are inte-

gers in <2(( — 7)1/2), each of these factors is an integer Q(( — 7)112)

and hence the absolute value (as complex numbers) of each factor

cannot be smaller than 1. Thus

I £ _ £' I   ^ 71'2, I £2 + £•£' + £'2|   ^ 71'2.

Let £ = a + fo, then

\b\   fk — 71'2    and       £2 + £•£' + £'2    =    3a2 - ft2    < 71'2.1 2 ' '

Consequently

71/2 _|_ 52       7       71/2

a2 < -< — -I-
3 12        3

7        7       71/2
a2 + b2 < — -\-1-< 4._  4       12        3

However A(£) =a2+b2 = N(rn) =2", and hence »=1, which is impos-

sible. We have thus shown Ramanujan's conjecture to be correct.

The equation 2n+2 — 7=x2 has rational integral solutions exactly when

n = l, 2, 3, 5, and 13.

3. We have seen that 2n+2 —7 = x2 has a solution exactly for those

n for which an-i = + 1, where

1
r» = — (&»_, + an-it-?)1'2) = (c„-i + a„_ir\
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We observe that

rn+1 = Cn-ir + an-ir2 = — 2an-i + (an-i + cn-i)r = cn + anr.

Thus a„+i = an — 2an-i if n>l, while a0 = ai = l. Hence the sequence

{an} is exactly that of the introduction.

Since 2n = rV", it follows that 2"+2-7a2_1 = 621_1. Conversely, if

2»+2-7y2 = x2 then 2-1(*+3'(-7)1'2) = 2-1(&«-i±an-i(-7)1/2) and

hence y= ±an-\. Thus

For a given rational integer n, the expression 2n+2 — 7y2 is the square

of a rational integer if and only if y2 = a2,-i.

We have seen that 1 occurs in the sequence {an} exactly twice and

— 1 occurs exactly three times. From the recursive relation one ob-

serves that each an is odd. We next study how often an odd integer c

can occur in the sequence {an} ■ Clearly c occurs in the sequence as

many times as there are integers n such that either 2B(n)=c, or

2Bi(n)=c, or 2B2(n)=c.

Let F(n) =ao+ain+a2n2+ • • • be a p-adic power series where

each at is a £-adic integer and at least one is a unit. Suppose F(n) con-

verges for all £-adic integers, then for each rational integer j, all but

a finite number of the o» are divisible by p>. Hence

00

F(n) = Z PUn),
y-o

where fj(n) are polynomials with unit coefficients and f0(n)A0.

Since fo has unit coefficients, on applying the division algorithm,

with /o as divisor, one obtains polynomials with integer coefficients.

Determine gi, hi, g2, h2, ■ ■ ■  in sequence, so that

fi = fohi + gh 0 fk deg gi < deg/o,

ft - gihi = fihi + g2, 0 g deg g2 < deg/0)

fm — gihm-i — gihm-t - ■ ■ ■ — gm-ihi = fohm + gm, 0 fk deg gm < deg/0.

Since the fj have unit coefficients, the resulting polynomials gj and hj

have integer coefficients.

Let g(n) =fo(n) + J^-i P%(n), H(n) = 1 + Yt-i P%(n)- Then

F(n) = g(n)H(n),

where

(i) g(n) is a polynomial with unit coefficients and such that deg g

= deg/o and g=/0 (mod p).
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(ii) H(n) is a power series with £-adic integer coefficients and con-

verges to a unit for every integer value of n.

It follows that F(n) = 0 exactly for those n for which g(n) = 0. Hence

The number of p-adic integer solutions of X^<" o o-ini=0 is at most

J, where J is the largest integer for which aj is a unit.

This result was first stated by Strassman [4J.

Now 2B(n)=un + 7n2C(n), where u is a 7-adic unit and C(n) is a

power series with 7-adic integer coefficients. Then 2B(n)=c for

exactly one 7-adic integer and hence for at most one rational integer.

One can also show that if 7'| c then 7'\n.

Also

2Bi(n) = 1 - «i« + 7n2Ciin)

and

2B2(n) = 1 — u2n + 7n2C2(n)

where Ui and u2 are 7-adic units and the din) are power series with

7-adic integers as coefficients. Consequently neither Bi(n) nor B2(n)

may assume the value c more than once. Hence

No integer appears in the sequence {a„} more than three times.

The preceding discussion does not determine the exact number of

times an integer c occurs in the sequence {an}. In order to do so, one

would need to use special arguments as we did for +1.

We have shown that for each integer c there exists an Nc such that

if n>Nc then an9*c. It would be interesting to have an explicit

formula for Nc.

4. As a small generalization of Ramanujan's problem, we prove

the following.

If A is an odd rational integer incongruent to 1 modulo 8, the equation

2"+A =x2 has at most one rational integer solution for (n, x). If there

is a solution then 0^«^2.

Let £> denote the ring of integers in Q(A112). If x is a rational

integer, x+A112 and x — A112 have the same p-adic value for any prime

pof £).

(i) If A =3 (mod 4), then 7r= 1+^41/2 is a prime in O and 2=ir2u,

where u is a unit in £). If 2n = x2—A, then x+All2 = x — l+ir = ir"v,

where v is a unit in O. But ir2\(x—l+ir), hence nS2. On the other

hand (1+A) and (2+A) cannot both be squares of rational integers.

(ii) If A=S (mod 8), 2 is a prime in £>. If 2" = x2-A, then n = 2k

and 2\x; but then 4* + 5 = l (mod 8), and consequently k = l and n = 2.

It is easily seen that if A =2 (mod 8), the equation 2"+A =x2 has
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at most one solution. The case A=0 (mod 4) can be reduced to an

equation with smaller A.

In a future paper we shall discuss the case .4 = 1 (mod 8). The

simple arguments used in the section are not applicable to this last

case, since the ideal (2) splits into two distinct prime ideals in Q.

We also hope to discuss such questions as the existence of a bound

N(p, A, k) such that for given rational integers p, A and k the equa-

tion pn+A =x* has at most N(p, A, k) rational integer solutions for

(n, x).
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