CERTAIN COLLECTIONS OF ARCS IN E⁸

B. J. BALL

1. Introduction. In considering upper semicontinuous decompositions of E^3 , it is sometimes useful to know whether a given collection of continua can be transformed, by a homeomorphism of E^3 onto itself, into another collection which is simpler in some respects; for example, a collection of straight line intervals might be transformed into a collection of vertical intervals, or a collection of arcs into a collection of straight line intervals. It might also be useful to know conditions under which such a transformation can be effected by means of a particular type of homeomorphism of E^3 onto itself.

In this paper, the following questions of this type will be considered. Suppose α and β are horizontal planes and G is a continuous collection of mutually exclusive arcs, each of which is irreducible from α to β and no one of which contains two points of any horizontal plane, such that the sum of the elements of G is compact and intersects α in a totally disconnected set. Under what conditions is there a homeomorphism of E^3 onto itself which takes each element of G onto a vertical interval and does not change the z-coordinate of any point?

It is shown, with the aid of certain results due to Bing [1] and Fort [5], that such a transformation is not always possible, even when the elements of G are straight line intervals. The following condition is found to be necessary and sufficient for the existence of such a transformation (see §3 for definitions of unfamiliar terms): For every positive number ϵ there exists a finite set K_1, K_2, \dots, K_n of topological cylinders with bases on α and β such that (1) the solid cylinders determined by K_1, K_2, \dots, K_n are mutually exclusive, (2) each arc of G is enclosed by some K_i and (3) each K_i has horizontal diameter less than ϵ .

2. Examples. The decomposition given by Bing in [1] can be modified so that the collection of nondegenerate elements is of the type considered above. If there were a homeomorphism of E^3 onto itself carrying these arcs onto vertical intervals, then by [2, Theorem 5], the decomposition space would be homeomorphic to E^3 ; since this is not the case, there is no such homeomorphism.

A stronger example is furnished by Fort's modification [5] of Bing's example. This modification can be carried out in such a way

Presented to the Society, January 28, 1958; received by the editors January 15, 1959.

that there exist four horizontal planes α , β , γ , δ with α above β , β above γ , and γ above δ , such that each nondegenerate element of the decomposition is the sum of three intervals g_1 , g_2 , g_3 with end points on α and β , β and γ , and γ and δ , respectively. Let G denote the collection of all nondegenerate elements of this decomposition and let G_1 , G_2 and G_3 denote, respectively, the collection of all intervals lying in an element of G and having end points on α and β , the collection of all such intervals having end points on β and γ , and the collection of all those with end points on γ and δ . Suppose there is a homeomorphism of E^3 onto itself which does not change the z-coordinate of any point and which takes each element of G_1 onto a vertical interval. Then there is a homeomorphism f_1 of E^3 onto itself which is fixed on β and on all points below β and which takes each element of G_1 onto a vertical interval. From the symmetry of the construction of G, it follows that there is also a homeomorphism f_3 of E^3 onto itself which is fixed on γ and all points above γ and which takes each element of G_3 onto a vertical interval. Then f_3f_1 is a homeomorphism of E^3 onto itself which is fixed on β , γ and all points between β and γ and which takes each element of $G_1 + G_3$ onto a vertical interval. The proof of the main theorem below shows that there is a homeomorphism f_2 of E^3 onto itself which is fixed on γ and all points below γ , does not change the z-coordinate of any point, takes each element of G_2 onto a vertical interval, and is such that if p and q are two points above β and on the same vertical line, then $f_2(p)$ and $f_2(q)$ are on the same vertical line. The transformation $f_2f_3f_1$ is a homeomorphism of E^3 onto itself which takes each element of G onto a vertical interval. But this is impossible since it implies, as before, that the decomposition space is homeomorphic to E^3 . Hence the elements of G_1 cannot be transformed into a collection of vertical intervals by a homeomorphism of E^3 onto itself which does not change the z-coordinate of any point.

It is perhaps worth noting that if G_1' is the decomposition of E^3 whose only nondegenerate elements are the elements of G_1 , then the decomposition space of G_1' is homeomorphic to E^3 . This is a consequence of the following theorem, which is essentially proved in [2]. If G is a monotone upper semicontinuous decomposition of E^3 such that (1) the set of nondegenerate elements of G is 0-dimensional in the decomposition space and (2) for every positive number ϵ and every open set G containing the sum of the nondegenerate elements of G, there is a homeomorphism of G onto itself which is fixed on G0 and which takes each element of G1 into a set of diameter less than G2, then the decomposition space is homeomorphic to G3.

3. **Definitions.** If G is a collection of sets, then G^* will denote the sum of the elements of G; the collection G is said to fill up a point set M if $G^* = M$.

A subset K of E^3 will be called a topological cylinder provided there exist two parallel planes α_0 and α_1 and a continuous collection G of mutually exclusive arcs filling up K such that (1) each element of G is irreducible from α_0 to α_1 , (2) no element of G contains two points of any plane parallel to α_0 , and (3) $\alpha_0 \cdot K$ and $\alpha_1 \cdot K$ are simple closed curves. The planar disks bounded by $\alpha_0 \cdot K$ and $\alpha_1 \cdot K$ will be called the bases of K and the collection G will be called a set of generators for K. A topological cylinder plus its bases will be called a closed topological cylinder and a closed topological cylinder plus its interior will be called a solid topological cylinder.

If K is a topological cylinder with bases on the planes α_0 and α_1 , then K is said to *enclose* a point set M provided that (1) each point of M lies either between the planes α_0 and α_1 or else on one of those planes and (2) if α is a plane parallel to α_0 or α_1 and intersecting M, then the simple closed curve $\alpha \cdot K$ encloses $\alpha \cdot M$ (i.e., $\alpha \cdot M$ is a subset of the bounded component of $\alpha - \alpha \cdot K$).

If K is a topological cylinder with horizontal bases, then $\max(\operatorname{dia}(\alpha \cdot K))$, α a horizontal plane, will be called the *horizontal diameter* of K.

4. Lemma 1. Suppose A is the annulus bounded by the unit circle C_1 and the circle C_2 with center O and radius 2, and G is a collection of mutually exclusive arcs filling up A such that each arc of G has one end point on C_1 and the other on C_2 and no arc of G contains two points of any circle with center O. Then there exists an isotopy $\{F_t\}$, $0 \le t \le 1$, such that (1) for each t, F_t is a homeomorphism of A onto itself which does not change the distance from O of any point, (2) F_0 is the identity on A and (3) F_1 is a homeomorphism which takes each element of G into an interval lying on a line through O.

PROOF. Let g_0 be an element of G. There is a continuous function $\phi(r)$, $1 \le r \le 2$, such that g_0 has the polar coordinate equation $\theta = \phi(r)$. For each t in [0, 1/2] and each point (r, θ) of A, let $F_t^1(r, \theta) = (r, \theta - 2t \cdot \phi(r))$. Then $\{F_t^1\}$, $0 \le t \le 1/2$, is an isotopy on A and F_0^1 is the identity. If $(r, \theta) \in g_0$, then $F_{1/2}^1(r, \theta) = (r, 0)$, so $F_{1/2}^1$ takes g_0 onto the interval with end points (1, 0) and (2, 0).

Let $g_0' = F_{1/2}^1(g_0)$ and let G' denote the collection of all images under $F_{1/2}^1$ of elements of G. For each point p of A, let $\theta(p)$ be the smallest non-negative polar angle for p and let $\pi(p)$ denote the point of intersection of G and the arc of G' containing p. For each t in [1/2, 1]

and each point $p = (r, \theta)$ of A, let $F_t^2(p) = (r, 2(1-t) \cdot \theta(p) + (2t-1) \cdot \theta(\pi(p)))$.

Since $\pi(p)$ is continuous on A and $\theta(p)$ is continuous on $A-g_0'$, F_t^2 is continuous on $A-g_0'$. By a direct argument, it can be shown that F_t^2 is also continuous at each point of g_0' , so it is continuous on all of A. From the fact that if $\theta(p_1) < \theta(p_2)$, then $\theta(\pi(p_1)) < \theta(\pi(p_2))$, it follows that F_t^2 is 1-1 and hence is a homeomorphism. It is easily verified that $\{F_t^2\}$, $1/2 \le t \le 1$, is an isotopy. Clearly $F_{1/2}^2$ is the identity on A, and since for each p in A, $\theta(\pi(p))$ is a polar angle for $F_1^2(p)$ and $\pi(p)$ is constant on any element of G', F_1^2 takes each element of G' into an interval lying on a line through O.

For each t in [0, 1/2], let $F_t = F_t^1$ and for each t in [1/2, 1], let $F_t = F_t^2 F_{1/2}^1$. Then $\{F_t\}$, $0 \le t \le 1$, is an isotopy satisfying the desired conditions.

LEMMA 2. Suppose K_1 and K_2 are right circular cylinders with horizontal bases such that K_2 encloses K_1 . For i=1, 2, let G_i be a set of generators for K_i and let U_i denote the interior of the closed cylinder determined by K_i . Then there exists a continuous collection G of mutually exclusive arcs filling up the closure of $U_2 - U_1$ such that no element of G contains two points of any horizontal plane and such that $G_1 + G_2 \subset G$.

PROOF. Suppose K_i , i=1, 2, is represented in cylindrical coordinates by the equations r=i, $0 \le z \le 1$. It follows from Lemma 1 that there is an isotopy $\{F_t^1\}$, $1 \le t \le 3/2$, such that (1) for each t in [1, 3/2], F_t^1 is a homeomorphism of K_1 onto itself which does not change the z-coordinate of any point, (2) $F_{3/2}^1$ is the identity on K_1 and (3) F_1^1 takes each element of G_1 onto a vertical interval. Similarly, there exists an isotopy $\{F_t^2\}$, $3/2 \le t \le 2$, such that for each t in [3/2, 2], F_t^2 is a homeomorphism of K_2 onto itself which does not change the z-coordinate of any point, (2) $F_{3/2}^2$ is the identity on K_2 and (3) F_2^2 takes each element of G_2' onto a vertical interval.

Let $M = \text{Cl}(U_2 - U_1)$ and for each point $p = (r, \theta, z)$ of M, let F(p) be the point (r, θ', z) , where θ' is such that if $r \leq 3/2$, $F_r^1(1, \theta, z) = (1, \theta', z)$ and if $r \geq 3/2$, $F_r^2(2, \theta, z) = (2, \theta', z)$. Then F is a homeomorphism of M onto itself which does not change the z-coordinate of any point. Since F agrees with F_1^1 on K_1 and with F_2^2 on K_2 , it takes each element of $G_1 + G_2$ onto a vertical interval.

Let G' denote the collection of all vertical intervals lying in M and having one end point on α_0 and the other on α_1 and let G denote the collection of all images under F^{-1} of elements of G'. Then G is a collection of mutually exclusive arcs filling up M and satisfying the desired conditions.

LEMMA 3. Suppose K_0 , K_1 , K_2 , \cdots , K_n are topological cylinders with bases on the horizontal planes α_0 and α_1 such that K_0 encloses K_j $(j=1, 2, \cdots, n)$ and such that no two of the solid cylinders determined by K_1 , K_2 , \cdots , K_n have a point in common. If for $j=0, 1, 2, \cdots, n$, G_j is a set of generators for K_j and U_j is the interior of the closed cylinder determined by K_j , then there is a continuous collection G of mutually exclusive arcs filling up the closure of

$$U_0-(U_1+U_2+\cdots U_n)$$

such that (1) no element of G contains two points of any horizontal plane and (2) each of G_0, G_1, \dots, G_n is a subcollection of G.

PROOF. Let K_0', \dots, K_n' denote right circular cylinders with bases on α_0 and α_1 which are related in the same way as the correspondingly lettered topological cylinders K_0, \dots, K_n . Let $U_j', j=0,1,\dots,n$, denote the interior of K_j' and let M and M' denote, respectively, the closures of $U_0-(U_1+\dots+U_n)$ and $U_0'-(U_1'+\dots+U_n')$. It follows from Theorem 1 and Lemma 2 of [4] and the remark following the proof of Theorem 5 of [3] that there is a homeomorphism h of M onto M' which does not change the z-coordinate of any point. For $j=0,1,\dots,n$, let G_j' denote the collection of all images under h of elements of G_j .

Let C_0 be a right circular cylinder with bases on α_0 and α_1 which is enclosed by K_0' and encloses each of K_1' , \cdots , K_n' . Let C_1 , \cdots , C_n be right circular cylinders which determine mutually exclusive solid cylinders, such that C_j encloses K_j' and is enclosed by C_0 . Let V_j denote the interior of C_j , let $M_0 = \operatorname{Cl}(U_0' - V_0)$ and for $j = 1, 2, \cdots, n$, let $M_j = \operatorname{Cl}(V_j - U_j')$. It follows from Lemma 2 that, for $j = 0, 1, \cdots, n$, there exists a continuous collection H_j of mutually exclusive arcs filling up M_j such that no element of H_j contains two points of any horizontal plane, $G_j' \subset H_i$, and every element of H_j which intersects C_j is a vertical interval. Let $H = H_1 + H_2 + \cdots + H_n$ and let G' denote the collection obtained by adding to H all vertical intervals with end points on α_0 and α_1 which intersect M'. Then the collection G of all images under h^{-1} of elements of G' satisfies the desired conditions.

THEOREM. Suppose α_0 and α_1 are horizontal planes and G is a continuous collection of mutually exclusive arcs such that (1) each element of G is irreducible from α_0 to α_1 and no element of G contains two points of any horizontal plane, and (2) G^* is compact and intersects α_0 in a totally disconnected set. In order that there should exist a homeomorphism of E^3 onto itself which takes each element of G onto a vertical interval and

does not change the z-coordinate of any point, it is necessary and sufficient that for every positive number ϵ , there exist a finite set K_1, K_2, \dots, K_n of topological cylinders with bases on α_0 and α_1 such that (1) the solid cylinders determined by K_1, K_2, \dots, K_n are mutually exclusive, (2) each arc of G is enclosed by some K_i and (3) each K_i has horizontal diameter less than ϵ .

PROOF. 1. Suppose there is a homeomorphism h of E^3 onto itself which takes each element of G onto a vertical interval and does not change the z-coordinate of any point. Let G' denote the set of images under h of the elements of G and let K' be a vertical cylinder with bases on α_0 and α_1 which encloses G'^* .

Suppose ϵ is a positive number. Let S be a compact set containing the solid cylinder determined by K' in its interior. There is a positive number δ such that if p and q are points of S and $\rho(p, q) < \delta$, then $\rho(h^{-1}(p), h^{-1}(q)) < \epsilon$. Since $\alpha_0 \cdot G'^*$ is compact and totally disconnected, there exists a finite set D_1, D_2, \cdots, D_n of mutually exclusive disks in α_0 , each of diameter less than ϵ , such that every point of $\alpha_0 \cdot G'^*$ is in the interior of some D_i . Let K_i' , $i=1, 2, \cdots, n$, denote the topological cylinder having D_i as one of its bases and having its other base on α_1 , which has a collection of vertical intervals as a set of generators. If $K_i = h^{-1}(K_i')$, then K_1, K_2, \cdots, K_n satisfy the conditions of the theorem.

2. Suppose the condition is satisfied. Let K be a topological cylinder having a set of vertical generators, such that the bases of K are on α_0 and α_1 and K encloses G^* . By hypothesis, there exists a sequence H_1, H_2, H_3, \cdots such that (1) for each n, H_n is a finite collection of cylinders each having one base on α_0 and the other on α_1 , such that no two of the solid cylinders determined by the elements of H_n have a point in common, (2) K encloses each element of H_1 and for each n, each element of H_{n+1} is enclosed by some element of H_n , (3) for each n, each arc of G is enclosed by some element of H_n , and (4) for each n, each element of H_n has horizontal diameter less than 1/n.

Let U denote the interior of the closed cylinder determined by K and for each n, let U_n denote the sum of the interiors of the closed cylinders determined by the elements of H_n .

Let G_0 be the set of vertical generators for K. It follows from Lemma 3 that there exists a continuous collection G_1 of mutually exclusive arcs filling up the closure of $U-U_1$ such that (1) each element of G_1 is irreducible from α_0 to α_1 and no element of G_1 contains two points of any horizontal plane and (2) $G_0 \subset G_1$ and each arc of G_1 which intersects an element of H_1 is a subset of that element. By

applying Lemma 3 to each element of H_1 , it can be shown that there is a continuous collection G_2 of mutually exclusive arcs filling up the closure of $U-U_2$, satisfying the first condition imposed on G_1 above and such that $G_1 \subset G_2$ and each arc of G_2 which intersects an element of H_2 is a subset of that element. By continuing this process, there may be obtained a sequence G_1 , G_2 , G_3 , \cdots such that (1) for each n, G_n is a continuous collection of mutually exclusive arcs filling up the closure of $U-U_n$ such that each element of G_n is irreducible from α_0 to α_1 and no element of G_n contains two points of any horizontal plane, and (2) for each n, $G_n \subset G_{n+1}$. Let $G' = G + G_1 + G_2 + \cdots$. Then G' is a continuous collection of mutually exclusive arcs filling up the solid cylinder determined by K, each element of G' is irreducible from α_0 to α_1 , no element of G' contains two points of any horizontal plane, and each element of G' which intersects K is a vertical interval.

Let M denote the solid cylinder determined by K. For each point p of M, let f(p) be that point q on the horizontal plane containing p such that the projection of q onto α_0 is an end point of the arc of G' containing p. Then f is a homeomorphism of M onto itself which is fixed on K and on $M \cdot \alpha_0$, does not change the z-coordinate of any point, and takes each element of G' onto a vertical interval. Let F be the function which agrees with f on M, leaves fixed each point of $E^3 - M$ not lying directly above a point of M, and is such that if p is a point of $E^3 - M$ lying directly above the point q of $\alpha_1 \cdot M$ (supposing α_1 is above α_0), then F(p) is the point with the same z-coordinate as p which lies directly above the point f(q). Then F is a homeomorphism of E^3 onto itself which satisfies all the desired conditions.

REFERENCES

- 1. R. H. Bing, A decomposition of E³ into points and tame arcs such that the decomposition space is topologically different from E³, Ann. of Math. vol. 65 (1957) pp. 484-499.
- 2. ——, Upper semicontinuous decompositions of E³, Ann. of Math. vol. 65 (1957) pp. 363-374.
- 3. E. Dyer and M.-E. Hamstrom, Completely regular mappings, Fund. Math. vol. 45 (1958) pp. 103-118.
- 4. M.-E. Hamstrom and E. Dyer, Regular mappings and the space of homeomorphisms on a 2-manifold, Duke Math. J. vol. 25 (1958) pp. 521-531.
- 5. M. K. Fort, Jr., A note concerning a decomposition space defined by Bing Ann. of Math. vol. 65 (1957) pp. 499-504.

University of Virginia