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Let £(z) be an entire function of exponential type without zeros

in the closed upper half plane, y^O, such that

f \og+\E(t)\dt
(1) I    - <  =o

J      1 + t2

and

(2) lim sup | y |_1 log | E(iy) \  g  lim sup y~x log | E(iy) \ .
y—*— oo y—»-J- oo

Such functions sometimes appear in applications of analytic function

theory to Hilbert space—for example, E(z) =exp( — iz).

Theorem. There is at most one real number a modulo tt such that

the following statement is not true. If F(z) is an entire function of ex-

ponential type such that

r iQg+'F^ idt ^
(3) I    - <  oo

J      1 + t2

and

(4) . F(iy) = o(E(i\y\)) (\y\  -» oo),

then

r i F(t)2 v- I Hi) I2
(5) |    ——  dt = 2« E -=--=-

J   \ Eit) E(t)E'(l) - E(t)E'(t)

where in the sum on the right t ranges in the real numbers such that

eiaE(t) is real.

It follows by Boas [l, pp. 83 and 97] that the theorem is vacuous if

E(z) is a constant. In what follows we suppose that E(z) is not a con-

stant. We will see in Lemma 2 below that for real t,

i(E(t)E'(l) - Eil)E'it)) > 0.

The interpretation of the theorem is that the sum converges if and

only if the integral converges and then (5) holds.

For each real a, let
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1 1
S(a, z) = — ieiaE(z)-ie-iaE(z),

1 1
C(a, z) = — eiaE(z) -\-e~iaE(z).

Here a is to be thought of as an index on the entire function of z. Note

that

eiaE(z) = C(a, z) - iS(a, z),

(6) C(a, z) = C(a, z),

S(a, z) = S(a, z).

Lemma 1. For each real a, when y>0, S(a, z)A0 and

Im C(a, z)/S(a, z) < 0.

Lemma 2. For each real a, the zeros of S(a, z) are real,

(7) C(a, z)S'(a, z) > 0    when   S(a, z) = 0

and

(8) Yj    C(a, t)[S'(a, l)(l + t2)]-1 < oo .
S(a,()=0

For all real t,

(9) i(E(t)E'(t) - E(t)E'(t)) = 2C(a, t)S'(a, t) - 2S(a, t)C'(a, t)

> 0.

Lemma 3. For every real a,

(10) E(iy) = 0(yS(a,iy)) (\y\  -> oo).

There is at most one real number a modulo ir such that

(11) S(a, iy) = o(E(iy)) (7_++0O).

Lemma 4. // a and fi are real numbers and if a does not satisfy (11),

and if Pi(z) is an entire function of exponential type satisfying (3)

and (4) and such that the right hand side of (5) converges, then

2.        y        _1 Fl(t)S(fi,  I)

l siZi-o E(l)E'(t) - E(t)E'(t)       t - X

2iFi(\)S'(fi, X)

~ E(\)E'(\) - E(\)E'(\)

whenever S(fi, X) = 0.



i959l SOME MEAN SQUARES OF ENTIRE FUNCTIONS 835

Proof of Lemma 1. By Boas [l, pp. 129-130], when y^O, \E(z)\

^ |.E(z)|, and since E(z) is not a constant, when y>0 the strict in-

equality holds. Therefore, by (6), when y>0,

| Cia, z) + iSia, z) |   <  | Cia, z) - iS(a, z) | .

So when y>0, S(a, z) 9^0 and

| Cia, z)/5(a, z) + i\   <  | Cia, z)/S(a, z) - i\

and hence

Im Cia, z)/Sia, z) < 0.

Proof of Lemma 2. By Lemma 1, for each real a,

-Im Cia, z)/Sia, z)

is non-negative and harmonic in the upper half plane y>0. By the

Poisson representation (Loomis and Widder [4]), there is A =A (a)

^0 and a non-negative measure p=ua on the Borel sets of the real

line such that

f (l + /2)-'^(0 < <*>

and for y>0,

Jydn(t)
, ,,  ,     , + Ay.
(t — x)~ + y2

Differentiating each side with respect to x, we get

d   C(a,z) r     d»(t)
— Im-= Im I   - •

dz S(a, z) J    (I - z)2

Differentiating instead with respect to y and using the Cauchy-

Riemann equations, we get

d   C(a,z) r    du(t)
— Re-= Re I   -■ + A.

dz S(a, z) J    (I- z)2

Therefore,

.   , d   C(a, z)       r    dp(t)
13 -Ll-Z=  j       MW    + A.

dz S(a, z)      J    (t-z)2

It follows from this formula that the zeros of S(a, z) are real and
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simple, that the mass of p, is concentrated at these zeros, and that

the mass of p at the zero z is C(a, z)/S'(a, z). (7) and (8) now follow

from the above properties of p. The equality (9) is easily verified

from the equations (6) by a direct substitution. The inequality fol-

lows from (7) on choosing a so that S(a, t) = 0.

Proof of Lemma 3. Integrating both sides of (13) we have

C(a,z)      C(a,w) r du(t)
-= (w — z)  I-h A (w — z).
S(a, z)      S(a, w) J    (t — z) (t — w)

Let w be fixed, let z = iy, divide both sides with respect to z and let

|y|—>co. By the Lebesgue dominated convergence theorem,

C(a, iy)
-> — A,
iyS(a, iy)

and therefore

eiaE(iy)
-> — A,
iyS(a, iy)

and this implies (10). To prove (11), suppose that for some real num-

ber a, S(a, iy)=o(E(iy)) (y—»+o°). From (6) we can easily verify

that

S(fi, iy) = sin(a - fi)eiaE(iy) + ei("-^S(a, iy)

and hence

lim   S(fi, iy)/E(iy) = sin(a - fi)eia.

If fi is not congruent to a modulo x, sin(a — fi) AO and

S(J3,iy) Ao(E(iy)) (y -* + «,).

Proof of Lemma 4. If fi is congruent to a modulo x, (12) follows

from (9). Suppose then that fi is not congruent to a modulo tt. It is

clear from the definitions that the zeros of S(a, z) are then distinct

from the zeros of S(fi, z). Note that when S(a, t) = 0, S(fi, t)

= sin (fi -a) C(a, t) and that when S(fi, t)=0, S(a, t) = sin (a -fi) C(fi, t).

Therefore, (12) is equivalent to the formula

04) £ "'"' - ^-
S(a,o-o S'(a, t)(z - 0      S(a, z)

when S(fi, z) =0. By (8) and the hypotheses on Pi(z) and the Schwarz

inequality, the left hand side of (14) is absolutely convergent when-
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ever S(a, z) 9^0. We prove the lemma by showing that (14) is valid

for all such complex z. Note that (1) implies that

(- log+ | S(a, t) | dt
I     -  <   oo.

J        1 + t2

It follows from (4) and (10) that

I Fiiiy) |   = oiySia, iy)) i\y\  -> oo).

By the proof of Lemma 2 of [2], there is a complex constant B=B(a)

independent of z such that

Fi(t)               Fiiz)
/ ,    -=-h B,

S(a.o=o S'iot, t)iz - t)      S(a, z)

or equivalently

Sja, z) Fijt) _ Fijz)      s Sja, z)

Eiz)   s(Zt=oS'ia,t)iz-t)   '   Eiz) E(z)

By the Lebesgue dominated convergence theorem, when z = iy and

y—>+oo, the sum above approaches zero. On the real axis,

\Sia, z)/E(z)\ gi. Since (1) holds,

lim  y1 log | E(iy) |

exists (Boas [l, p. 96]). It follows from (2) that

lim sup y~x log  | S(a, iy)/E(iy) |   ^ 0.
»-♦+"

By Boas [l, p. 93], | 5(a, z)/£(z)| gl for y^O. By hypothesis,

lim   Fi(iy)/E(iy) = 0.

Therefore, limy^+,0 BSi<x, iy)/E(iy) =0. Since by hypothesis (11) does

not hold, 5 = 0. Q.E.D.

Proof of Theorem. Let F(z) satisfy the hypothesis of the theorem

and suppose that the sum on the right hand side of (5) converges for

some real a which does not satisfy (11). Let fi be real. Let Xi be any

zero of S(fi, z) different from X. By Lemma 4 with Fi(z)=S(fi, z)
•(z-Xi)"1,

2.       y,      _1_     Sjfi, t)      Sjfi, t)    =  o

* s(«.«-o Eil)E'it) - Eit)E'it)  it - Xi) it - X)

On the other hand, if Pi(z) =S(fi, z)(z—X)-1, then Lemma 4 yields
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2.       y       _1_  S2(fi,  Q

1 5(^-o E(l)E'(t) - E(t)E'(t)  (I - X)2

2i(S'(fi, X))2

£(X)£'(X) - E(\)E'(\) '

By Lemma 4 with Pi(z) =F(z) and Bessel's inequality (Halmos [3,

p. 14])

»  z      -|F(,)1'_

(15) £2i  £       _ I F("l'_
s^)-o E(t)E'(i) - E(t)E'(t)

<  oo.

For real x, let (/>(#) be the phase of E(x). Then

1     _ , ,
<p'(x) = — i(E(x)E'(x) - E(x)E'(x))/ \ E(x) \2 > 0.

Therefore, <p(x) can be defined for all real x so as to be a continuous

increasing function of x. (15) can be written

F® 2 J_ ^ 2. _   \F(0\* ,

acM)-o P(0    *'(0 =   *fl(«^-o £(fll'(0 - P«P'W '

Integrate each side from fi = 0 to fi = ir. Since the summand is non-

negative, the sum and the integral can be interchanged. Therefore,

r i f(0 2 v- I p(012
(16) 1    ——  dt < 2wi    Yj    -_ _-—- •

J  \ E(t)       ~       a(<n?_« E(l)E'(l) - E(t)E'(t)

By Lemma 3, for all but one number fi modulo ir, (11) does not hold.

For such fi, a and fi can be interchanged in (15) and hence the equal-

ity holds. It is clear that the equality must hold in (16) and hence (5)

follows in this case.

Suppose on the other hand that F(z) satisfies the hypotheses of the

theorem and that the left hand side of (5) converges. As we have just

seen,

r\F(t)2 r°~r ^ I^W|S
|  \-±Ldt=2ri\        da     Yj     -_   '        _- <«>.

J     E(t) Ja,o        sm-o E(t)E'(t) - E(t)E'(t)
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Therefore, for more than one real a modulo ir, the right hand side of

(5) converges. If we choose a so as not to satisfy (11), then (5) follows

by the first part of the proof. Q.E.D.
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