
THE BERNSTEIN PROBLEM

LOUIS DE BRANGES

Let w(x) be a positive valued, continuous function of real x, such

that for each ra = 0, 1, 2, • • • , xnw(x) is bounded. S. Bernstein asks

for conditions on w(x) that the weighted polynomials P(x)w(x) be

uniformly dense in the continuous complex valued functions which

vanish at infinity (Pollard [5]).

Theorem. A necessary and sufficient condition that the weighted poly-

nomials P(x)w(x) fail to be dense in the continuous functions which

vanish at infinity is that there be an entire function F(z) of exponential

type, not a polynomial, which is real for real z and whose zeros \n are real

and simple, such that

r log+ 1 F(t) 1 jt ^
I    -dt < co

J l + t2

and

Yj   I F'(\n)w(\n) I"1  <   CO.

Lemma 1. If p is a nonzero measure on the Borel sets of the real line,

such that for each n = 0, 1, 2, • • •

j  | t"dn(t) |    <   co

and

| lndp(i) = 0,

and if

M(z) = sup | P(z) |

where P(z) ranges in the polynomials such that

j | P(t)dp.(t) I   = 1,

then M(z) is bounded away from zero, and

r log M(t)
|    -dt < co

J      l + l2
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and

\y\   C     log Mi0
log Mix + iy) ̂  m-l 7     dt iy^O).

ir   J     it — x)2 + y2

If G(z) is an entire function of minimal exponential type such that

f\G(t)dp(t)\ <«., and

(1) G(iy) = oiMiiy)) (|y|  -» oo),

then

f Git)duit) = 0.

Lemma 2. Let F(z) be a nonconstant entire function of exponential

type, whose zeros X„ are real and simple, such that

r log+ I F(t) I
(2) *     '     Wl dt <   oo.

J     1 + t2

Let G(z) be an entire function of exponential type such that

r iog+ 1 G(t) | jt
I   -dt < <x>

J        1 + t2

~|      G(Xn)

\F'(Xn)\n

and

G(iy) = oiFiiy)) (|y|  ->«,),

G(z) G(X.)

P(z) ~ P'(X„)(z - X„) '

Lemma 3. i/ P(z) and G(z) satisfy the hypotheses of Lemma 2 and if

^   G(\n)

P'(Xn)

and

yG(iy) = o(F(iy)) i\y\ ->«>),

then
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F'(X.)

Proof of Lemma 1. Let p. be as in the statement of the lemma. By

the lemma of Pollard [5, p. 407], for every polynomial P(z)

r   du(l)       r P(0dn(0
P(z)        ~-=        —;-

J     t — z     J       t — z

The proof of the properties of M(z) stated in the lemma is in [2,

pp. 149-150]. Let G(z) be as in the statement of the lemma and let

r   G(t) - G(z)
H(z) =        —-— <*/*(<).

J t — z

As in [2, pp. 147-148], H(z) is an entire function of minimal exponen-

tial type. For every polynomial P(z) such that f\P(t)dp(t)\ fkl,

| H(z) |   *\f(t- «)-H?(04»(0   +  I G(z) | I j (t - z)-^p(0

= \f(t- z)-lG(t)dp.(i)  + | G(z)/P(z) I | J" 0 - zr'PQWO

= i yi_i(J i G(t)du(o i +1 g(z)/p(Z) i y

By the definition of M(z),

\H(z)\   fk |yh(J \G(t)dri)\  + |Gto|/Jfto).

By (1), H(z) goes to zero at both ends of the imaginary axis. By Boas

[l, p. 83], H(z)=0. Therefore,

r C   tG(t) - zG(t)
I G(t)dn(t) =  I    —-— da(t)

r  tG(t) - zG(z)
= I    -dp(l).

J l — z

For every polynomial P(z) such that J\P(t)dp(t)\ fkl,

I f,-vw ,A^\ C  lG(0da(l) zG(z)  r   P(0dp(t)
I  G(t)dp(t)   SI    - +   - I    -

IJ I      \J       t-z P(z) J        t-z

I r  tG(t)dp.(t) ,
= ~^~~ + \y\-l\zG(z)/P(z)\.

\J        t — z
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By the definition of M(z),

/I      |  r  tG(t)du(t) ,    .
G(i)dp(t) k + | y h11 2G(z) | /Jf (s).

I      IJ        £ — z

Let z = iy where y—>+ co. The first term goes to zero by the Lebesgue

dominated convergence theorem. The second term goes to zero by the

hypothesis (1) on G(z). Therefore, jG(t)du(i)=0. Q.E.D.

Proof of Lemma 2. Let F(z) and G(z) satisfy the hypotheses of the

lemma. Let

^        G(\„)
Gi(z) = F(z) E-—-1

K' ^ F'iK)iz-\n)

G2iz) = Giz) - Giiz).

It is obvious that Gi(z) is an entire function and that

,      I IV.      G(\n)

Gi(z) ^ 2 | y |-i | zF(z) | E     ,

where the hypothesis is that the sum converges. As in [2, pp. 147-

148], Gi(z) has exponential type and the hypothesis (2) implies that

r log+ | Gi(t) |
- ffl/ <   oo .

J      1 +12

By the Lebesgue dominated theorem, G(iy) =o(F(iy)) (|y|—»°°).

Because of the hypotheses on G(z), G2(z) is an entire function of ex-

ponential type such that

r   log+ I G2(t) I
(3) -=—!-^-L A < oo

J       1 + *2

and

(4) Gt(ty) = o(F(iy)) (|y|-♦«>).

Since Ct2(X„)=0 for all n and the zeros of F(z) are all simple, H(z)

= G2(z)/F(z) is an entire function. By (2) and (3) and the representa-

tion theorem for functions analytic in a half plane (Boas [l, p. 92)],

H(z) has exponential type and

r log+ | H(l) |
-dt < oo.

J 1 + t2

By Boas [2, p. 97], the indicator diagram of H(z) is a vertical line
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segment. By (4), H(z) is an entire function of minimal exponential

type which goes to zero at both ends of the imaginary axis. By Boas

[1, p. 83], H(z)=0. Q.E.D.
Proof of Lemma 3. Since F(z) and G(z) satisfy the hypotheses

of Lemma 2,

r G(t) - G(z)
—-— da(t) = 0.

J t-Z

Since F(z) and zG(z) satisfy the hypotheses of Lemma 2,

r tG(t) - zG(z)
I   -dp.(t) = 0.

J t-z

So

r r iG(t) - zG(z) r G(t) - G(z)
j G(t)du(t) =       ——-—d,x(t) - z      —-—du(t)

J J t — z J t — z

= 0. Q.E.D.

Proof of theorem, the sufficiency. Let F(z) be as in the state-

ment of the theorem. If P(z) is any polynomial,

r log+ | P(t) \
I   -dt < oo

J        1 + t2

and elementary estimates from the Hadamard factorization of F(z)

show that

yP(iy) = o(F(iy)) (\y\  -> oo).

Let p. be the Borel measure with its mass concentrated at the zeros of

F(z) and with mass (F'(\n)w("kn))~l at X„. The hypothesis is that

f\dp(t)\ < oo. By Lemma 3, for every polynomial P(z),

C ^ P(K)
P(t)w(i)dp.(t)      =      Yj     -h~    =     0.

J F'(\,)

Since p is not the zero measure, the weighted polynomials are not

uniformly dense. Q.E.D.

Proof of theorem, the necessity. Suppose the weighted poly-

nomials are not dense. Apply the lemma of [4] with 5 the real line

and E the set of weighted polynomials. In the notation of [4], U(E)

contains a nonzero extreme point p, and if g(f) is a Borel measurable

function of real t such that
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J    | git)wit)dpit) |    <  oo

and

J g(t)w(t)dp(t) = 0,

then there is a sequence Pn(z) of polynomials such that

\imnJ\g(t)—Pn(t)\w(t)\dp(t)\ =0. Let M(z) be defined for p. as in

Lemma 1. By this definition, the sequence Pn(z)/M(z) converges

uniformly in the complex plane. By properties of M(z) concluded in

Lemma 1, the limit is a function of the form G(z)/M(z) where G(z) is

an entire function of minimal exponential type. It is clear that g(t)

= G(t) a.e. with respect to p.

Since w(x) > 0 for all x, it is obvious that the support of p. contains

more than one point. Let [a, b] be any finite interval which contains

at least two points of the support of p. Then certainly we can choose

a Borel measurable function g(t) which vanishes a.e. outside of [a, b],

such that

J | git) \ w(t) | dp(t) |   = 1

and

J g(t)w(t)dp(l) = 0.

As we have seen, g(t) is equal a.e. with respect to p. to an entire func-

tion G(z). Therefore, the support of p. is contained entirely in the set

of zeros of G(z) and the interval [a, b]. By the arbitrariness of [a, b],

the support of p. is a discrete set {Xn}.

Let Xi and X2 be any two distinct points of the support of p. and

let g(t) be the function which vanishes everywhere except at Xi and

at X2, such that

g(\i) = [(Xi - x2)w(x1)/i({x1})]-1,

g(X2) = [(X2 - x1)w(x2)M({x2})]-1.

Then

r 1 gio 1 wn) 1 dpn) 1 = 21 x2 - \i h < *

and
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j g(t)w(t)dp.(t) = 0.

Let G(z) be the entire function constructed above corresponding to

g(t). Since G(z)/M(z) is a uniform limit of continuous functions which

vanish at infinity in the complex plane,

G(iy) = o(M(iy)) (\ y | —* co).

Let F(z) = (z—\i)(z—'k2)G(z). Since G(z) is dominated in the complex

plane by M(z) where M(z) is bounded away from zero and

r log M(t)
I   -dt < oo

J      l + t2

it follows that

C log+ j G(t) |
I   ■-dt < <x>

J l + t2

and

/• log+ | F(/) |
I   •-d t < co.

J 1 + /2

Let X3 be any third point of the support of p. and let H(z)

= (z—Xi)_1(z—Xs)_1P(z). Then H(z) is an entire function of minimal

exponential type, /| H(t) | w(t) | dp(t) \ < 00 and

H(iy) = o(M(iy)) (\ y\ —* 00).

By Lemma 1,

jH(t)w(t)d»(t) = H(\i)w(\i)ix({\i}) + H(\3)w(\MM)

= 0.

Since

#(Xi) = [(Ai-XXAOpdXx})]-1,

H(Xi) = [(X3 - Xi)W(X3)a({X3{)]-1.

To summarize, if X is any real zero of F(z) in the support of p,

P'(XMX)m({X}) = 1.
We claim that F(z) has no other zeros. For suppose F(z) had a zero

X which was not in the support of p. Let Xi be a zero of F(z) in the

support of p. Let L(z) = (z— \)~x(z—\i)~1F(z). It follows by the use of

Lemma 3 as above that fL(t)w(t)dp(t) =0, or equivalently that
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(Xx - X)~1F'(Xi)w(Xi)p({Xi}) = 0,

which contradicts the fact that

F'(Xi)w(Xi)p({Xi}) = 1.

In other words, the zeros of F(z) are real and simple, and are in one-

to-one correspondence with the points of support of p.. It is obvious

from the properties of p. that p, is supported at more than a finite num-

ber of points and that therefore F(z) is not a polynomial. But now

E | F'iKMK) h1 = J* | dp |   =1. Q.E.D.
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