THE BERNSTEIN PROBLEM
LOUIS DE BRANGES

Let w(x) be a positive valued, continuous function of real x, such
that for each =0, 1, 2, - - -, x"w(x) is bounded. S. Bernstein asks
for conditions on w(x) that the weighted polynomials P(x)w(x) be
uniformly dense in the continuous complex valued functions which
vanish at infinity (Pollard [5]).

THEOREM. A necessary and sufficient condition that the weighted poly-
nomials P(x)w(x) fail to be dense in the continuous functions which
vanish at infinity is that there be an entire function F(2) of exponential
type, not a polynomial, which is real for real z and whose zeros \,, are real
and simple, such that

dt < =

f log* | F(8) |
1+
and
P Ow0) [ < .

LeEMMA 1. If u is a nonzero measure on the Borel sets of the real line,
such that for each n=0,1, 2, « - -

f It"du(t)l < ®

and

f rdu(l) = 0,

and if
M(z) = sup l P(z) I

where P(z) ranges in the polynomials such that
f | PO | = 1,

then M (2) is bounded away from zero, and

log M (¢
f og ()dt<g°
14

’
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and

El log M (1)
log M 1Y) < dt # 0).
og M(x +iy) = — f (it (y=0)
If G(2) is an entire function of minimal exponential type such that
JIGt)du(t)| <, and
1) G(iy) = o(M(iy)) (lyl = =),

then

fG(l)du(t) = 0.

LEMMA 2. Let F(2) be a nonconstant entire function of exponential
type, whose zeros N, are real and simple, such that

logt | F(1
@ fMde
1+ 2

Let G(2) be an entire function of exponential type such that

il .
G(\n)
ZlF'(x,.)x,. ’
and
G(iy) = o(F(iy)) (ly] = =),
then
G(z) G(An)

Fi) FOW)G—\)
LeEmMA 3. If F(z) and G(2) satisfy the hypotheses of Lemma 2 and if

G(\»)
> F'(\)

and

yG(iy) = o(F(iy)) (| y] = ),
then
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GO
2 FOv)

ProOF oF LEMMA 1. Let u be as in the statement of the lemma. By
the lemma of Pollard [5, p. 407], for every polynomial P(z)

P2 f du(l) f P@)du()

t— 3z

The proof of the properties of M (z) stated in the lemma is in [2,
pp. 149-150]. Let G(2) be as in the statement of the lemma and let

Git)—G
wo - [ TO5

Asin [2, pp. 147-148], H(2) is an entire function of minimal exponen-
tial type. For every polynomial P(z) such that [ IP(t)d,u(t)I =1,

16| =| [ ¢ 9m60a0|+ @] f ¢ = 9ma0)|

< | f (t — )7GOu() | + |6)/PG) | ] f (t = 2 P()du() ]

< sl ([ 160ao! + [6w/ral).
By the definition of M(z),
76| = Iy( [ 160a0] + 66| /@),

By (1), H(s) goes to zero at both ends of the imaginary axis. By Boas
[1, p. 83], H(2) =0. Therefore,

[ewmnon = [ 160 = 60 1

l— 3
_ f 1G(t) — 2G(2) a0,
t— 32

For every polynomial P(z) such that [|P()du(t)| <1,

l f tG(i)dﬂ(t) 2G(z)  P(1)du(?)
t—3z P(3) t— 3

1G(8)du(t i
é'f %.Jf | 71| 26(2)/P(z) | .

f Gdu(t) | <
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By the definition of M(z),
G()d
[ eomo|s|f COXOL 4 1yl 6 | /w6,

Let z=1y where y—+ . The first term goes to zero by the Lebesgue
dominated convergence theorem. The second term goes to zero by the
hypothesis (1) on G(2). Therefore, [G(f)du(t) =0. Q.E.D.

Proor oF LEMMA 2. Let F(z) and G(2) satisfy the hypotheses of the
lemma. Let

G\,
Gi(z) = F(2) 2 Fﬁz—)——)\)’

G2(z) = G(2) — Gi(2).
It is obvious that Gi(2) is an entire function and that

G(\»)
F ()\n)}\n

Gi(z) < 2] y|1| 2F () | 2

where the hypothesis is that the sum converges. As in [2, pp. 147—
148], Gi(z) has exponential type and the hypothesis (2) implies that

l -+
f log* | Ga(0) | dt < o
142

By the Lebesgue dominated theorem, G(iy)=0(F(:y)) (lyl —0).
Because of the hypotheses on G(z2), G2(2) is an entire function of ex-
ponential type such that

©)) f log—zlfj—gt)—' dt < o
and
4) Ga(iy) = o(F(iy)) (|y]— ).

Since Gz(\,) =0 for all #» and the zeros of F(2) are all simple, H(2)
=Gy(2)/F(2) is an entire function. By (2) and (3) and the representa-
tion theorem for functions analytic in a half plane (Boas [1, p. 92)],
H(z) has exponential type and

logt
[ e 20|, _
142

By Boas [2, p. 97], the indicator diagram of H(z) is a vertical line
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segment. By (4), H(z) is an entire function of minimal exponential
type which goes to zero at both ends of the imaginary axis. By Boas
[1, p. 83], H(z)=0. Q.E.D.

Proor or LEMMA 3. Since F(z) and G(2) satisfy the hypotheses
of Lemma 2,

f M d,u(t) = Q.

it — 3
Since F(z) and 2G(z) satisfy the hypotheses of Lemma 2,
f IG(t) — 2G(2)

{— 3

du(t) = 0.

So
G() — 2G G@H) — G
[ewmo - [ Mmo—z [ —(‘1————@@@

= 0. Q.E.D.

PROOF OF THEOREM, THE SUFFICIENCY. Let F(2) be as in the state-
ment of the theorem. If P(2) is any polynomial,

log+
f-———og |P(l)|dt< 00
1+

and elementary estimates from the Hadamard factorization of F(z)
show that

yP(iy) = o(F(iy)) (| 9] = «).

Let u be the Borel measure with its mass concentrated at the zeros of
F(z) and with mass (F'(A\.)w(\.))~! at A,. The hypothesis is that
fld,u(t)| < «. By Lemma 3, for every polynomial P(z),

P\,
f POw(dult) = 3 F(O\)) _

Since p is not the zero measure, the weighted polynomials are not
uniformly dense. Q.E.D.

PROOF OF THEOREM, THE NECESSITY. Suppose the weighted poly-
nomials are not dense. Apply the lemma of [4] with S the real line
and E the set of weighted polynomials. In the notation of [4], U(E)
contains a nonzero extreme point u and if g(¢) is a Borel measurable
function of real ¢ such that
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[ 1 s0n0n0]| < =
and
f gw()du(t) = 0,

then there is a sequence P,(z) of polynomials such that
lim, f|g(f) —P.(f)| w(t)|du(t)| =0. Let M(z) be defined for p as in
Lemma 1. By this definition, the sequence P,(z)/M(2) converges
uniformly in the complex plane. By properties of M(2) concluded in
Lemma 1, the limit is a function of the form G(2)/M(z) where G(2) is
an entire function of minimal exponential type. It is clear that g(¢)
=G(t) a.e. with respect to u.

Since w(x) >0 for all x, it is obvious that the support of u contains
more than one point. Let [a, b] be any finite interval which contains
at least two points of the support of u. Then certainly we can choose
a Borel measurable function g(f) which vanishes a.e. outside of [a, ],
such that

[ls0lwolao] =1
and
[ svua - o

As we have seen, g(f) is equal a.e. with respect to u to an entire func-
tion G(2). Therefore, the support of u is contained entirely in the set
of zeros of G(z) and the interval [a, b]. By the arbitrariness of [a, ],
the support of u is a discrete set {7\”}.

Let A1 and \; be any two distinct points of the support of u and
let g(¢) be the function which vanishes everywhere except at A and
at \,, such that

gO) = [ = M)w)u({A],
ge) = [z — Mwa)u({r])]
Then

f g | w@ | du@®| =2[Xe=M[T< »

and
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[ stwoao = o.

Let G(z2) be the entire function constructed above corresponding to
g(t). Since G(z)/ M (2) is a uniform limit of continuous functions which
vanish at infinity in the complex plane,

G(iy) = o(M(iy)) (|y] — ).

Let F(2) = (z—M\1)(2—\:)G(2). Since G(2) is dominated in the complex
plane by M(z) where M (2) is bounded away from zero and

log M (¢)
142

dt < o,
it follows that

dt < =

f log* | G(@) |
14 22

and

l+
f og IF(t)Idt<°°
1422

Let N\; be any third point of the support of u and let H(2)
=(z2—N\1)"1(z—Ns)"1F(2). Then H(z) is an entire function of minimal
exponential type, [| H(?)|w(#)|du(f)| < = and

H(iy) = o(M(iy)) (ly] = ).
By Lemma 1,

fH(t)W(t)d#(t) = HM)w)e({M)) + BA)wAa)u({rs})
= 0.
Since
HAy) = [ = Aw)e({N])],
HQs) = [(a — Mwar({As])]

To summarize, if N is any real zero of F(2) in the support of u,
F)wMu({r])=1.

We claim that F(z) has no other zeros. For suppose F(z) had a zero
N which was not in the support of u. Let \; be a zero of F(z) in the
support of u. Let L(2) =(2—N\)"1(z—\)~1F(2). It follows by the use of
Lemma 3 as above that [L(f)w(t)du(f) =0, or equivalently that
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(1 — NTF Q)wou({M]) =0,
which contradicts the fact that
F'Ww)u((r)) = 1.

In other words, the zeros of F(z) are real and simple, and are in one-
to-one correspondence with the points of support of u. It is obvious
from the properties of u that u is supported at more than a finite num-
ber of points and that therefore F(z) is not a polynomial. But now

> F O [ =f | du| = 1. Q.E.D.
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