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AN EXTREMAL PROBLEM FOR POLYNOMIALS

FRANCIS P. CALLAHAN, JR.

Problem. Consider the class of nth order polynomials {/(z)} such

that/(l)=0, 1/001 ̂ 1 for \z\ =1. From this class select that poly-

nomial for which

1   C2\ i
— I      |/(«") \2<W is greatest.
2x J o

For the solution we require the following

Lemma. Let A(z) = £-jvAnzn, (An = A_„). Then there exists a poly-

nomial f(z) of degree N such that h(z) = \f(z) \2 for \z\ =1 if and only

if h(z)=0 for \z\ =1. Proof is available in reference [l ].

The function 1 — |/(z) |2 (with z replaced by 1/z) satisfies the con-

ditions of the lemma for any/(z) that satisfies the conditions of the

problem. Thus, we can write, 1 — |/(z) 12= | g(z) |2, where g(z) satisfies

the conditions that \g(z)\ ^1 for \z\ =1 and |g(l)| =1. (Without

real loss of generality, we take this last to mean g(l) = 1.)

In addition, for/(z) to solve the problem, the associated g(z) must

minimize the integral

1    r2'< i
- I g(eie) \2dd.
2x J o

Writing g(z) = £^ gnz", we see that we are seeking to minimize

the quantity £^ |g„|2 subject to the constraint that £^ gn = L

A straightforward application of the Schwarz Inequality vields:

1= Ho gn^(YJ |gn|2)1/20V+l)1/2. The sum-of-squares is smallest

when we set g„ = 1/(^+1), and obtain for the corresponding g(z),
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1 N
g(z)  = - X) 3".
SW      N+l   o

This well known function is equal to unity for 2= 1 and vanishes when

2 is any of the other iV+lst roots of unity. It is easy to show that

N + 1
sin-6

i , 2
g(ei$)     =- , -ir fk 6 fk x.

11 (N+l) sin 6/2    •

From this it is seen that | g(z) | = 1 for \z\ = 1, so that this constraint

is satisfied even though we did not impose it in determining g(z).

As a consequence, the function 1 — | g(z) |2 (with I/2 set for z) satisfies

the conditions of the lemma so that the associated function, f(z),

is the solution to the problem.

One obtains a fair idea of the nature oi f(z) from the observations

that it never passes outside the unit circle, it passes through the origin

for 2=1, and it is tangent on the inside to the unit circle at all the

other 7V+lst roots of unity. The value of the integral being maxi-

mized is N/(N+1).

The method of computation of the TVth order / is given essentially

in the proof of the lemma:

Solve the reciprocal equation l—g(z)g(l/z)=0, and, from each pair

of reciprocal roots select one member. Then f is that Nth order poly-

nomial having these selected quantities for roots.

f must also be properly normalized, of course. To remove an ir-

relevant ambiguity, we may specify that none of the roots should lie

outside the unit circle.

For example:

/o = 0,

fi=(z- l)/2,

fi = ((l + 31'2)22 - 2Z + (1 - 31/2))/(18)1'2.

The author is grateful to the referee for the following reference.
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