- 2. S. Izumi, Some trigonometrical series XIV, Proc. Japan Acad. vol. 31 (1955).
- 3. —, Notes on Fourier analysis (XXVI): Negative examples in the theory of Fourier series, Tohoku Math. J. vol. 1 (1950).
- 4. M. E. Noble, On a convergence criterion of Hardy and Littlewood, Quart. J. Math. vol. 9 (1958) pp. 28-39.
 - 5. A. Zygmund, Trigonometrical series, Warsaw, 1936.

University of Chicago and Northwestern University

AN EXTREMAL PROBLEM FOR POLYNOMIALS

FRANCIS P. CALLAHAN, JR.

PROBLEM. Consider the class of *n*th order polynomials $\{f(z)\}$ such that f(1) = 0, $|f(z)| \le 1$ for |z| = 1. From this class select that polynomial for which

$$\frac{1}{2\pi} \int_0^{2\pi} |f(e^{i\theta})|^2 d\theta \text{ is greatest.}$$

For the solution we require the following

LEMMA. Let $h(z) = \sum_{-N}^{N} h_n z^n$, $(\bar{h}_n = h_{-n})$. Then there exists a polynomial f(z) of degree N such that $h(z) = |f(z)|^2$ for |z| = 1 if and only if $h(z) \ge 0$ for |z| = 1. Proof is available in reference [1].

The function $1-|f(z)|^2$ (with \bar{z} replaced by 1/z) satisfies the conditions of the lemma for any f(z) that satisfies the conditions of the problem. Thus, we can write, $1-|f(z)|^2=|g(z)|^2$, where g(z) satisfies the conditions that $|g(z)| \leq 1$ for |z|=1 and |g(1)|=1. (Without real loss of generality, we take this last to mean g(1)=1.)

In addition, for f(z) to solve the problem, the associated g(z) must minimize the integral

$$\frac{1}{2\pi}\int_0^{2\pi} \left| g(e^{i\theta}) \right|^2 d\theta.$$

Writing $g(z) = \sum_0^N g_n z^n$, we see that we are seeking to minimize the quantity $\sum_0^N \left|g_n\right|^2$ subject to the constraint that $\sum_0^N g_n = 1$. A straightforward application of the Schwarz Inequality yields: $1 = \sum_0^N g_n \le (\sum_0^N \left|g_n\right|^2)^{1/2} (N+1)^{1/2}$. The sum-of-squares is smallest when we set $g_n = 1/(N+1)$, and obtain for the corresponding g(z),

Received by the editors November 21, 1958 and, in revised form, January 15, 1959.

$$g(z) = \frac{1}{N+1} \sum_{n=0}^{N} z^n.$$

This well known function is equal to unity for z=1 and vanishes when z is any of the other N+1st roots of unity. It is easy to show that

$$\left| g(e^{i\theta}) \right| = \left| \frac{\sin \frac{N+1}{2} \theta}{(N+1) \sin \theta/2} \right|, \quad -\pi \leq \theta \leq \pi.$$

From this it is seen that $|g(z)| \le 1$ for |z| = 1, so that this constraint is satisfied even though we did not impose it in determining g(z). As a consequence, the function $1 - |g(z)|^2$ (with 1/z set for \bar{z}) satisfies the conditions of the lemma so that the associated function, f(z), is the solution to the problem.

One obtains a fair idea of the nature of f(z) from the observations that it never passes outside the unit circle, it passes through the origin for z=1, and it is tangent on the inside to the unit circle at all the other N+1st roots of unity. The value of the integral being maximized is N/(N+1).

The method of computation of the Nth order f is given essentially in the proof of the lemma:

Solve the reciprocal equation 1-g(z)g(1/z)=0, and, from each pair of reciprocal roots select one member. Then f is that Nth order polynomial having these selected quantities for roots.

f must also be properly normalized, of course. To remove an irrelevant ambiguity, we may specify that none of the roots should lie outside the unit circle.

For example:

$$f_0 = 0,$$

 $f_1 = (z - 1)/2,$
 $f_2 = ((1 + 3^{1/2})z^2 - 2z + (1 - 3^{1/2}))/(18)^{1/2}.$

The author is grateful to the referee for the following reference.

REFERENCE

1. G. Polyá and G. Szegö, Aufgabe und Lehrsatze aus der Analysis, vol. 2, p. 81, Problem VI 40, Berlin, Springer, 1925.

GENERAL ATRONICS CORPORATION, BALA CYNWYD, PENNSYLVANIA