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Northwestern University

A CHARACTERIZATION OF ALGEBRAIC NUMBER
FIELDS WITH CLASS NUMBER TWO1

L. CARLITZ

Let Z = R(6) denote an algebraic number field over the rationals

with class number h. It is familiar that h — l if and only if unique

factorization into prime holds for the integers of Z. For fields with

h = 2 we have the following criterion.

Theorem. The algebraic number field Z has class number ^ 2 if and

only if for every nonzero integer aCZ the number of primes ttj in every

factorization

(1) a = 7TlX2 •  •  • Tk

depends only on a.

Suppose first that h = 2 and consider the factorization into prime

ideals

(2) (a) = pi ■ • • psti • • « Xt,

where the py are principal ideals while the ry are not. Then

Pi =  (O (j =■=  1, • ■ ■ , s).

Since h = 2, it follows that

r¿ry = (pa) (i,j = 1, • • • , t);

moreover t must be even,  =2u, say. Thus every factorization into

primes implied by (2), for example
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a = ein ■ • • TT,pi2 • • • Pt-i,t,

where e is a unit, will contain exactly s+u primes.

We now show that when h>2, there occur factorizations (1) with

different values of k. The proof makes use of the fact that every

class of ideals contains at least one prime ideal. (For proof of a much

stronger result see [l]).

Assume first the existence of a class A of period m>2. Let p be a

prime ideal in A and p' a prime ideal in A-1. Then we have

(3) Pm = (x),       p"» = (t)',       pp' = (tti),

and it is easily verified that x, x', tti are primes. Clearly (3) implies

(4) xi = exx',

where e is a unit.

In the next place assume the existence of two classes Ai, A2 each

of period 2 such that A3 = AiA2 is not principal. Choose prime ideals

pyG^4y 0 = 1. 2, 3). Then we have

(5) py = (xy) (j = 1, 2, 3),       pip2p3 = (x),

and again it is easily verified that n, 7r2, X3, x are all primes. From (5)

we get

(6) X2   =   XlX2X3.

Using (5) and (6) it is evident that when h>2, the number of

primes k in (1) is not independent of the factorization.

Since the case h=l requires no further discussion, this completes

the proof of the theorem.
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